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Abstract 

In this paper, a system of linear equations will be solved using matrices, and we 
will discuss the solution using the direct method, which is the method that leads 
to the exact solution after a limited number of simple arithmetic operations . 
The Gaussian elimination method will be used by converting the system into a 
trigonometric system and then using the back substitution method . 

 

As for the second method, which is the Gauss-Jordan method for deletion, we 
perform a deletion process for a specific variable from all the equations after 
dividing an equation by the anchor element, which finally we get a matrix of 
diagonal equations, rather it is a matrix of unity . 
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Many problems of numerical analysis are reduced to the problem of solving a 
linear system or set of equations. Among these problems, for example: solving 
ordinary or partial differential equations by finite-difference methods, solving 
eigenvalue problems in mathematical physics, fitting of data by the least-squares 
method, Polynomial approximation. The use of matrix conventions is very useful 
in solving problems of systems of linear equations. 
Suppose that a set of linear equations to be solved will be written in the form: 
Ax=y 
Where A : Transaction matrix 
A =  
 
𝑎11 𝑎21 . . . 𝑎1𝑛 
𝑎21 𝑎22 . . . 𝑎2𝑛 

.      

.      

.      
𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛 

 
x = It is the vector to find ….. X =  
𝑥1 

𝑥2 

. 

. 

. 

𝑥𝑛 

 
y = The vector of the known constants is on the right-hand side 
𝑦1 
𝑦2 
. 

. 

. 

𝑦𝑛 

 
That is, the set of equations to be solved is: 
𝑎11𝑥1+𝑎12𝑥2+………. 𝑎1𝑛𝑥𝑛=𝑦1 

𝑎21𝑥1+𝑎22𝑥2+………. 𝑎2𝑛𝑥𝑛=𝑦2 

. 

. 

. 
𝑎𝑛1𝑥1+𝑎𝑛2𝑥2+………. 𝑎𝑛𝑛𝑥𝑛=𝑦𝑛  
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We will limit our study to the case where there is only one solution x of the set 
for each vector not on the right side. This means that we will be limited to the 
case where the number of group equations is equal to the number of unknowns 
(equal to n), that is, when the coefficients matrix A is square . The matrix A in 
this case must be invertible so that the set (or system) has exactly one solution for 
each y vector. 
For matrix A to be invertible, the condition must be satisfied 
det(A) <> 0 
where det(A) is the determinant of the matrix A 
 
 
We can also in this case express the solution of the set Ax = y in terms of 
determinants with what is called Cramer's rule; However, the use of determinants 
is not useful from a practical point of view in solving linear systems because the 
calculation of one determinant is generally equal - in terms of the degree of 
difficulty - with solving the linear system. Therefore, we will not use 
determinants to solve linear systems. However, we will mention a method for 
calculating the values of the determinants (to use these values in other fields), and 
this method is based on a direct method for solving linear systems . 
 
 
In general, numerical methods for solving linear systems can be divided 
into two main types: 
1  - Direct Methods 
2- Iterative Methods 
 

1- Direct Methods:  
 
These are the methods that lead - in the absence of rounding errors and other 
errors - to the exact solution yet. A limited number of simple arithmetic 
operations. Practically speaking, since the computer works with finite word 
lengths, direct methods do not usually lead to exact solutions. In fact, errors 
resulting from round-off, instability, and loss of significance may lead to 
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inaccurate, possibly wrong, and completely useless results. And a large part of the 
numerical analysis is related to the study of these errors and the investigation of 
the reason and how they arise and the means of overcoming them and the search 
for ways that lead to reducing their totality. The main method used for direct 
solutions is the Gauss elimination (G) method, or the modified method: the 
Gauss-Jordan method. We will review these two methods 
 
(a) Gauss (G) Elimination method 
This method can be summarized in the following two steps for solving a system of 
linear equations: 
(1) Transforming the given system into a “triangular system” equivalent to the 
original system, and “triangular system” means that the matrix of coefficients 
becomes a triangular matrix. 
 (2) Solve the resulting trigonometric system by the “back substitution” method. 
We prefer to explain Almighty or how to implement these two steps with a 
simple example, and then we mention after this the Gaussian elimination method 
algorithm to solve any general linear system. 
 
Example 1 
 
Using the Gaussian elimination method, find the solution to the following set of 
linear coefficients: 
 
20𝑥1 + 15𝑥2  +  12𝑥3  =  0              (1) 
6𝑥1  +  4𝑥2  +  3𝑥3  =  0                   (2) 
6𝑥1  +  3𝑥2  +  2𝑥3  =  6                   (3) 
 
The solution : 
Step one: convert the given system into a parabolic trigonometric system 
Start by removing the variable x from the second and third equations using the 
first equation, as follows: 
 
20𝑥1 + 15𝑥2  +  12𝑥3  =  0                                                  (1)` 
-6/20 X (1) + (2)            −1/2𝑥2  −  3/5𝑥3  =  0                       (2)` 
−6/20 𝑋 (1)  + (3)           − 3/2𝑥2  −  8/5𝑥3  =  6                    (3)` 
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And that is by keeping the first equation as it is, and adding to the second 
equation the first equation multiplied by 

−𝑎21 / 𝑎11  =  −6/20 
 
We added to the third equation the first equation multiplied by 

−𝑎31 / 𝑎11  =  −6/20 
 
Now we remove the variable 𝑥2 from the third equation (3) using the second 
equation (2), by adding to the third equation the second equation multiplied by: 
 

−𝑎′32 / 𝑎′22  =  −(−3/2)/(−1/2)  =  −3 
 
The first and second equations remain the same: 
20𝑥1 + 15𝑥2  +  12𝑥3  =  0                                                  (1)` 
−1/2𝑥2  −  3/5𝑥3  =  0                       (2)` 
−3 𝑋 (2)′ +  (3)′           − 1/5𝑥3   =  6                    (3)` 
 
 
To solve this resulting trigonometric system, we start from the back, that is, we 
start with the last equation that gives us the value of 𝑥3 

𝑥3  =  6/(1/5)  =  30 
 
Then the second gives us the value of 𝑥2 

𝑥3  =  (0 +  3/5   𝑋   30) / (−1/2)  =  −36 
Finally, the first equation gives us the value of 𝑥1: 

𝑥1  =  (0 − 15 𝑋 (−36) − 12 𝑋 30) / 20 =  9 
 
That is, the solution is 
𝑥1 

𝑥2 

 𝑥𝑛 

 
Now we will re-solve the same set of equations given by the same method of 
elimination, but with some modifications in their order or their coefficients. 
We start by eliminating 𝑥1 from the second and third equations using the first 
equation: 
 

9 

−36 

30 
= 
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𝑥1 + 3/4𝑥2  +  3/5𝑥3  =  0                                                  (1)` 
-6   X (1)`   + (2)            −1/2𝑥2  −  3/5𝑥3  =  0                          (2)` 
−6   𝑋 (1)` +  (3)           − 3/2𝑥2  −  8/5𝑥3  =  6                            (3)` 
 
Notice that we divided all the coefficients of the first equation (1) by 20 to make 
the factor of 𝑥1  equal to unity, and we got the equivalent equation (1)`. Then we 
used this equivalent equation (1)` to delete x from each of the equations (3) and 
(2) by multiplying equation (1)` by an appropriate number (6-) and then adding it 
to the equation from which 𝑥1   is required to be deleted, and equation (1)` 
remains as it is .  
 
Now we remove the variable 𝑥2   from the third equation using the second 
equation, but it is preferable that we change the order of the second and third 
equations - if necessary - so that we make a coefficient 𝑥2  , which has the greatest 
absolute value, and since 1/2 < 3 /2 So we change the order of equations (3)` and 
(2)`. 
 
 
𝑥1 + (3/4)𝑥2  + (3/5)𝑥3  =  0           
 (−3/2)𝑥2  −   (8/5)𝑥3  =  6                   
 (−1/2)𝑥2  −   (3/5)𝑥3  =  0                   
 
We multiply the second equation by (-2/3) to make the factor of 𝑥2  equal to the 
unit, then we use the resulting equation here to remove 𝑥2  from the third 
equation, by multiplying the second resulting equation by ½ and adding it to the 
third, keeping the first equation and the second resulting equation as they are. 
𝑥1 + (3/4)𝑥2  + (3/5)𝑥3  =  0           
 𝑥2  +   (16/15)𝑥3  =  −4                   
 (−1/15)𝑥3  =  −2                   
 
We multiply the last equation by (-15) to make the factor of  𝑥3  equal to unity, 
and thus we bring the three equations to the following form: 
𝑥1 + (3/4)𝑥2  + (3/5)𝑥3  =  0           
 𝑥2  +   (16/15)𝑥3  =  −4                   
 (𝑥3  =  30                   
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And this set of equations - which represents a trigonometric system - is equivalent 
to the given original set (that is, it has the same solution), because each of the 
three operations : 

• Multiply an equation by a constant. 
• Multiply an equation by a constant and add it to another equation. 
• Substitution of two equations in place of each other. 

(The operations that we performed on the original)  set do not change the 
solution of the set . 
 
The second step: Solve the resulting trigonometric system by back-
substitution method. 
 
We start solving the trigonometric system - that is, finding the values of the 
variables 𝑥1  𝑥2  𝑥3  - using the last equation (ie the third) which gives the value of 
𝑥3  : 
𝑥3    =  30 
 
Then the penultimate equation (that is, the second), from which we get the value 
of   𝑥2   
𝑥2  =  −4 −  32 =  −36  
 
Finally, the first equation maximizes the value of  𝑥1   
𝑥1 =  27 −  18 =  9   
Thus, we obtained the same solution as before. 
The process of making the coefficient 𝑥𝑖    in Equation No. i equal to unity is 
called the normalization process. And the process of switching equations to make 
the 𝑥𝑖   factor in equation No. i with the largest absolute value is called the partial 
pivoting process. 
 
Now suppose we have a general system Ax=y 
where A is the matrix of coefficients, x is the vector to find, and y is the vector of 
the known constants on the right side.  
And we assume that |A| <> 0 , y <> 0 
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Gauss Elimination Algorithm 
 
Step1: converting the given system into a trigonometric system 
This can be done in one of two ways: 
(a) Elimination with Normalization 

• Divide the first equation by 𝑎11  . This element is called pivot element. 
 
(If   𝑎11   = 0 it changed the order of the equations, that is, replace the first 
equation with another equation so that it becomes  𝑎11 <>  0). 

• Add this first equation, multiplied by: 
−𝑎21 , −  𝑎31 , , , , , , −𝑎𝑛1 

To Equation No.: 
2,3,………n 
respectively, in order to delete 𝑥1   each of the equations from the second to the 
last. 

• Divide the second equation by the new coefficient 𝑎`22  . This element in 
the main diameter, which we divide the equation by, is called a pivot 
element (also if it is equal to zero, change the order of the equations). 

• Eliminate 𝑥2  from all equations from the third to the last, in a similar way 
to the method of elimination 𝑥1  , that is, by adding the new second 
equation multiplied by: 

−𝑎`32 , −  𝑎`42 , , , , , , −𝑎`𝑛2 
To Equation No.: 
3,4,………n 
In order (note:  

𝑎`𝑖𝑗 
are the coefficients in the new equations). 

• Continue the process of deleting the items  𝑥3, 𝑥4, 𝑥5, . . . . . 𝑥𝑛−1  in order, 
as much as possible. 

(b) Deletion without alteration 
• Add the first equation multiplied by 

−𝑎21 / 𝑎11 , −𝑎31 / 𝑎11 , . . . . . . . . . . −𝑎𝑛1 / 𝑎11  
To Equation No.: 
2,3, …… n 
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respectively, in order to delete 𝑥1 from each of the equations from the second to 
the last. 

• Eliminate  𝑥2 from each of the equations from the third to the last in a 
similar way to the method of elimination 𝑥1, that is, by adding the new 
second equation multiplied by 

−𝑎`32 / 𝑎`22 , −𝑎`42 / 𝑎`22 , . . . . . . . . . . −𝑎`𝑛2 / 𝑎`22 
 
to equation No 
3,4, …….. n 
 
Respectively . 
 
 

• Continue the process of removing the items 𝑥3, 𝑥4, 𝑥5, . . . . . 𝑥𝑛−1   in order. 
Finally, we get a trigonometric system : 

𝑐11𝑥1 + 𝑐12𝑥2 + , , , , , , , , , , , , , 𝑐1𝑛𝑥𝑛  =  𝑧1  
            𝑐22𝑥2  +   𝑐23𝑥3, , , , , , , , , , , , , 𝑐2𝑛𝑥𝑛  =   𝑧2 

. 

. 

. 

. 

. 

. 

. 

            𝑐𝑛−1,𝑛−1𝑥𝑛−1  +   𝑐𝑛−1,𝑛𝑥𝑛 =   𝑧𝑛−1 
                   𝑐𝑛,𝑛𝑥𝑛 =   𝑧𝑛 

note : 
In case (a) (elimination with adjustment) the diagonal coefficients  𝑐𝑖𝑖  are equal to 
the unit. 
That is: 

𝑐𝑖𝑖 ∶  𝑖 =  1,2,3, . . . . . . . . . 𝑛 
Step 2: Back-substitution to solve the resulting trigonometric system 
By substitution, we get the values of the variables in their inverse order, like this: 
(from the last equation) 
𝑥𝑛  =  𝑧𝑛/𝑐𝑛,𝑛   
𝑥𝑛−1  =  (𝑧𝑛−1  −  𝑐𝑛−1,𝑛𝑥𝑛)/𝑐𝑛−1,𝑛−1   
…………. 
(from the penultimate equation) 
 
𝑥𝑖 = (𝑧𝑖  −   ∑ 𝑐𝑖,𝑘𝑥𝑘

𝑛
𝑘=𝑖+1  ) / 𝑐𝑖𝑖 
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We can summarize the solution algorithm by back-substitution of the 
trigonometric system 
Cx = z 
Where C an upper trigonometric matrix (n x n ) all of its diagonal elements are 
not equal to zero, with the following relationships: 
 

𝑥𝑖  =  (𝑧𝑖   −  ∑ 𝑐𝑖,𝑘𝑥𝑘

𝑛

𝑘=𝑖+1

 ) / 𝑐𝑖𝑖 
i = n , n-1 , …… 1 
 
Noting that when i = n the sum ∑𝑛

𝑘=𝑖+1  becomes ∑𝑛
𝑘=𝑛+1  , that is, there are no 

limits in this sum, and therefore it gives zero (conventionally). 
 
Number of Operations in Gauss Elimination method. 
 
If we use the Gaussian elimination method to solve a linear system consisting of n 
equation in n unknown, it can be shown that: 
 
The number of multiplication and division operations 

(𝑛3 + 3𝑛2  −  𝑛 ) / 3 
The number of addition / subtraction operations: 

(2𝑛3 + 3𝑛2  −  5𝑛 ) / 6 
 
That is, the number of multiplication and division operations (as well as addition 
and subtraction) is approximately equal  

(𝑛3 / 3 ) 
 
Gauss Elimination With Partial Pivoting 
The anchor or wedge element in any step of this algorithm may not be equal to 
zero, and therefore can be divided by it, but it may be very small and thus may 
lead to large errors. A very small coefficient usually arises as a difference between 
two approximately equal numbers, and such errors can be avoided by changing 
the equations, i.e. by changing their arrangement ( permutations ) . It is preferable 
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to make this arrangement so that the pivotal element - which was divided on it - 
becomes large. We usually rearrange the equations so that the pivotal element is 
the factor with the largest absolute value . Usually, the Gaussian method in which 
we follow this procedure is called the Gaussian method of deletion with partial 
pivoting. 
 
The previously explained posterior compensation method leads to the following 
result: 
 
 
theory: 
If  C it is a upper trigonometric matrix and all its diagonal elements are not equal 
to zero, then the matrix is invertible, that is, it has an inverse. 𝐶−1 
proof : 
In fact, the aforementioned back-compensation method shows that the 
trigonometric system 
Cx = z 
has at most one solution for each given vector z. 
Therefore,C  it must be reversible based on the following known theory. 
 
theory: 
If we assume A that a matrix is square n x n , then all of the following statements 
are equivalent: 
(a) A homogeneous system Ax = 0 has only a trivial solution x = 0 
(b) For each vector y given on the right-hand side, the system Ax = y has a 
solution 
(c) The matrix A is invertible. 
Therefore, the vector x given by the previous back compensation algorithm 
It is called: The solving the trigonometric system 
Not: a solution to the trigonometric system 
 
 
 



Page 13 of 25 

(B) Gauss-Gordon ( G – J ) Elimination Method 
 
This method is the same as the Gauss delete method with a slight modification. 
For example, in the Gauss method of deletion with adjustment, after we divide an 
equation by the dependent element, we use this equation to delete a specific 
variable from all the equations below this equation. In the Gauss-Jordan method, 
we perform the process of deleting this variable expression from all the equations 
above In addition to that below this equation. 
 
Therefore, the Gauss-Jordan method algorithm is the same as that of the Gauss 
method with this simple modification (elimination from all equations above and 
below the wedge element) and in this modified method we finally get a diagonal 
coefficient matrix, rather it is a Unit matrix and thus we directly get the solution 
The final set of equations without any other calculations, we don't need to apply 
the back compensation method. 
 
 
Example 2 
Using the Gauss-Jordan elimination method, find the solution to the set of linear 
equations given in Example 1 
The solution : 
We start the solution as in solving Example 1 where we delete 𝑥1 from each of the 
second and third equations.. and when we reach the process of deduction 𝑥2, it is 
not deleted from the third equation only, but from the first as well (using the 
second equation as well). Thus, instead of the following three equations (which 
we obtained while solving Example 1). 
 

          𝑥1  + (3/4)𝑥2  +  (3/5)𝑥3  =  0 
                             𝑥2  + (16/15)𝑥3  =  −4 
                                          (−1/15)𝑥3  =  −2 

 
We get the following three equations (where it was deleted 𝑥2 from the first 
equation, by multiplying the second by (-3/4) and adding it to the first). 

𝑥1                     − (1/5)𝑥3  =  3 
             𝑥2  +  (16/15)𝑥3  = - 4 

                          (−1/15)𝑥3  =  −2 
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Then we multiply the last equation by (-15)  making my coefficient 𝑥3 equal to 
the unit, and we use the resulting equation to delete 𝑥3 from each of the first and 
second equations, by multiplying the third (resulted) by 1/5 and adding it to the 
first, and multiplying the third by -16/15  and adding it to the second, thus: 

         𝑥1            =  9 
                𝑥2         =  −36 

                   𝑥3     =  30 
 
 
These three equations give the required solution all in terms of matrices instead of 
equations as follows (and we can also follow this method of writing when solving 
using Gauss's elimination method): 

 
 
 
 
 
 
 
 

 
 

 
 
               x-2/3 

 
 
 

 
x(1/2) , -(3/4)                                                                                                                            

 
 
 
 
 

x1 
20 

6 

6 

x2 
15 

4 

3 

x3 
12 

3 

2 

Y 

0 

0 

6 

 

1 

1 

1 

3/4 

-1/2 

-3/2 

3/5 

-3/5 

-8/2 

0 

0 

6 

 

1 

1 

0 

3/4 

-3/2 

-1/2 

3/5 

-8/5 

-3/5 

0 

6 

0 

 

1 

0 

0 

3/4 

1 

-1/2 

3/5 

16/15 

-3/5 

0 

-4 

0 

 

1 

0 

0 

0 

1 

0 

-1/5 

16/15 

-1/5 

3 

-4 

-2 
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x-(1/15)  

 
 
 
 
 
X(1/5),-(16/15)  

 
 
 
note : 
If we suppose that the number of equations represents the same number of 
unknowns (that is, the variables), then the number of operations in the Gauss 
method - as we have seen previously - is estimated at about 𝑛3/3, while the 
number of operations in the Gauss-Jordan method is about 𝑛3/2. Therefore, the 
Gauss method is scientifically preferred for this reason, and the following can be 
proven: 
 
The number of arithmetic operations in the Gauss-Jordan method: 
The number of multiplication/division operations: 

𝑛3/2 + 𝑛2  − ( 𝑛 /2) 
Number of addition / subtraction operations: 

𝑛3/2  −  ( 𝑛 /2) 
That is, the number of multiplication and division operations (as well as addition 
and subtraction) is approximately equal. 

𝑛3/2 
 
 
Applications on Elimination Method 
(a) Evaluating Determinants 
From the properties of determinants, we know that no step of the Gaussian (or 
Gauss-Jordan) deletion algorithm changes a specific value of the coefficients 
matrix except for the process of dividing by each center element, and the process 
of switching two rows (or two columns). And since the value of the determinant 

1 

0 

0 

0 

1 

0 

-1/5 

16/15 

1 

3 

-4 

30 

 

1 

0 

0 

0 

1 

0 

0 

0 

1 

9 

-36 

30 

 

   𝑥1 

   𝑥2 
   𝑥3 

9 

-36 

30 
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of the resulting matrix is equal to 1 (note - in either of the two methods of 
deletion - that the resulting matrix has a zero inferior triangle, and ones in the 
main diagonal), then the value of the original determinant is thus equal to the 
product of pivots, with the sign of changing The result is if it has performed an 
odd number of row and column switch operations. . 
det(A) = (−)𝑘𝑝1   𝑥  𝑝2  𝑥  . . . . . . . 𝑥  𝑝𝑛 
Where: k represents the number of times two rows or two columns are switched. 
And  𝑝1 , 𝑝2 , 𝑝3 . . . . . . 𝑝𝑛   focal elements. 
 
note: 
       Calculating the definite value of an nxn matrix by following the Gauss 
method of elimination requires the number of steps or operations to be estimated 
at  (𝑛)3 / 3 , while this number rises to the limits of !n when following the usual 
methods for calculating determinants. 
Before we take an example of calculating determinants by the method of deletion, 
we study the second application of this method, which is the inversion of 
matrices, and then we give an example of the two applications together. 
 
(b) Finding Matrix Inversion 
We assume that A , Z , I  , Square Matrices  n x n  and A.Z = I , and Z is the 
inverse of the matrix A, that is Z = (𝐴)−1, the matrix A is non-singular. 
(We assume that A is the matrix whose inverse is to be found). 
The relationship AZ = I can be written in detail as: 

 
 
 
 
 
 

 
0 0 . . . 0 
0 1 . . . 0 
.      
.      
.      
0 0  . . . 1 

𝑎11 𝑎21 . . . 𝑎1𝑛 
𝑎21 𝑎22 . . . 𝑎2𝑛 

.      

.      

.      
𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛 

 

𝑧11 𝑧21 . . . 𝑧1𝑛 
𝑧21 𝑧22 . . . 𝑧2𝑛 

.      

.      

.      
𝑧𝑛1 𝑧𝑛2  . . . 𝑧𝑛𝑛 
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From the properties of matrices, this relationship gives us the following set of 
relations: 
 
 

 

A 

𝑧11 
𝑧21 
. 
. 
. 
. 
. 
. 

𝑧𝑛1 

 
 

= 

1 
0 
. 
. 
. 
. 

0 
 
  
 

 

A 

𝑧12 
𝑧22 
. 
. 
. 
. 
. 
. 

𝑧𝑛2 

 
 

= 

0 
1 
. 
. 
.. 

0 
………………………………………….., 
 

 

A 

𝑧1𝑛 
𝑧2𝑛 
. 
. 
. 
. 
. 
. 

𝑧𝑛𝑛 

 
 

= 

0 
0 
. 
. 
. 
. 

1 
 
Each of these relationships (numbered n) represents a set of linear equations (there 
are n equation). 
 That is, if we put Z =  (𝐴)−1  , then AZ = I 
 

A 𝑧𝑗  = 𝑒𝑗     j = 1,2,3, …… n 
where Zj: column represents the number j in the matrix Z. 
 𝑒𝑗 : represents column number j  in matrix I. That is: 
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𝑧𝑗  =  

𝑧1𝑗  
𝑧2𝑗  

. 
. 
. 
. 
. 
. 

𝑧𝑛𝑗 

 
 

, 𝑒𝑗  = 

0 
0 
. 

1 
. 
. 
0 

 
 
Thus, the columns in the matrix (𝐴)−1  = z are solutions to groups of linear 
equations, where the sides of the minus in these groups are equal to the columns 
of the unit matrix, and the coefficients matrix in each of these groups is equal to 
the matrix A (the inverse of which is required to be found) 
. In the Gaussian deletion method (or Gauss - Jordan), we can deal with several 
Yemeni parties at the same time. If we apply the sit-elimination method on the 
system AZ = I, so that we treat the columns of the unit matrix 1 - at the same 
time - as several vectors No (that is, several vectors on the right sides) and the 
columns of the matrix Z as the corresponding solution vectors (x), We thus obtain 
- from these solution vectors - the inverse matrix to be found (𝐴)−1  =  𝑍, where 
these vectors are the columns of that matrix. 
 
Example 3 
Suppose that :  
 
 

A= 
 2 

1 
-3 

-7 
9 
8 

4 
-6 
5 

  
Y = 

 9 
1 
6 

 

 
(I) Find, using the Gauss-Jordan method, the solution of the linear system Ax = y 
(without switching any rows or columns, and using ordinary fractions in the 
calculations). 
(II) Calculate the elements of the inverse matrix  𝐴−1 with the avarice of the 
system AZ = I, using partial angularity. 
(III) Find the value of |A| 
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The solution: 
(I), (II) Since the coefficient matrix A will be used to find both the solution of the 
linear system Ax = y , and the inverse matrix 𝐴−1, so we solve the parts (1) and (i) 
of the question together. 
  
X (1/2) 2 

1 
-3 

-7 
9 
8 

4 
-6 
5 

9 
1 
6 

1 
0 
0 

0 
1 
0 

0 
0 
1 

 
 
 
 
X (2/25) 

1 
0 
0 

-7/2 
25/2 
-5/2 

2 
-8 
11 

9/2 
-7/2 
39/2 

1/2 
-1/2 
3/2 

0 
1 
0 

0 
0 
1 

 
 
 
X (5/47) 

1 
0 
0 

0 
1 
0 

-6/25 
-16/25 
47/5 

88/25 
-7/25 
94/5 

9//25 
-1/25 
7/5 

7/25 
2/25 
1/5 

0 
0 
1 

 
 
 

1 
0 
0 

0 
1 
0 

0 
1 
0 

4 
1 
2 

93/235 
13/235 
7/47 

67/235 
22/235 
1/47 

6/235 
16/235 
5/47 

 
 

 
X = 

 4 
1 
2 

  
𝐴−1 = 1/235 

 93 
13 
35 

67 
22 
5 

6 
16 
25 

 

 
 
(III) Since no two rows or any two columns have been replaced (k = 0), then: The 
value of the determinant = the product of the pivot elements. 
Det(A) = |A| = 2   x   25/2   x   47/5    = 235 
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 The number of arithmetic operations required to find the inverse of a 
matrix. 
 
In the previous example, we followed the Gauss-Jordan method of deleting to 
find the inverse of the matrix A , by obtaining on the left-hand side at the end the 
unit matrix, resulting in the right-hand side being the inverse matrix 𝐴−1. It was 
possible to follow the seating method for deletion instead of the Gauss-Jordan 
method by getting in The left side at the end on a superimposed trigonometric 
matrix U and then we apply the backcompensation algorithm n times. It can be 
proven that: .  
 
(a) If we follow the Gauss-Jordan method to find the inverse𝐴−1: 
 The number of multiplication / division operations: 

(3/2)𝑛3  −  (1/2)(𝑛)  
The number of addition / subtraction operations: 

(3/2)𝑛3  −  2(𝑛)2 + (1/2)𝑛  
 
(b) Whereas if we follow the Gaussian method of elimination to find the inverse 
𝐴−1: the number of multiplication / division operations: 

(4/3)𝑛3  −  (1/3)(𝑛)  
The number of addition / subtraction operations 

(4/3)𝑛3  −  (3/2)𝑛2 + (1/6)𝑛  
 
That is, in the Gauss-Jordan method for finding the inverse 𝐴−1, the number of 
multiplication and division operations (as well as the number of addition and 
subtraction operations) is approximately equal (3/2)𝑛3 , while the corresponding 
number in the Gaussian method of deletion is (4/3)𝑛3 
 
(C) Factorization of a Matrix: 
Sometimes you need to decompose a square matrix A into the product of two 
matrices: one is a lower triangular matrix (L) and the other is an upper triangular 
matrix (U). 
That is: 
A = LU 
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 Sometimes this process of decomposition is called triangular decomposition. 
Sometimes there are conditions for the elements of the matrix L or the elements 
of the matrix U. 
In order to know how to take advantage of the method of elimination in the 
work of this analysis, we suppose that we have n equations in n unknowns: 
Ax = y 
where A is an n x n matrix. After one step of the elimination process, matrix A1 
becomes: 
 
𝑎11 𝑎12 . . . 𝑎1𝑛 
𝑎21 𝑎`22 . . . 𝑎`2𝑛 

.      

.      

.      
𝑎𝑛1 𝑎`𝑛2 . . . 𝑎`𝑛𝑛 

 
 
Assuming that there are no substitutions. As we know, we have obtained matrix 
A1 from matrix A, by subtracting the first row multiplied by 

(𝑎𝑖1/𝑎11) from row No i And we can retrieve the matrix A from the matrix A1 by 
adding the first row multiplied by (𝑎𝑖1/𝑎11) to row No. i where 
i = 1, 2, ..., n . This is equivalent to the multiplication: 
A = 𝐿1𝐴1 
 
𝐿1 =        
 

1 0 . . . 0 
121 1 . . . . 

.      

.      

.      
1𝑛1 0 . . 0 1 

 
 
𝐼𝑖1  = (𝑎𝑖1/𝑎11)         , 𝑖 =  2,3, . . . . . 𝑛 
 
Similarly, the new right-hand side 𝑦1  related to its old value y by the relation: 
y = 𝐿1𝑦1 
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Assuming that there are no permutations, the second step in the elimination 
process is to create the matrix  𝐴2  =  
 
𝑎11 𝑎12 . . . 𝑎1𝑛 

0 𝑎`22 . . . 𝑎`2𝑛 
0 0 𝑎``33   𝑎``2𝑛 
.      
.      
0 0 𝑎``𝑛3 . . 𝑎``𝑛𝑛 

 
By subtracting the second row  

𝑎`12 / 𝑎`22  from row 1 for the values i= 3,4,,,,,, n . Once again we can restore 𝐴1  
with the inverse process: 𝐴1  = 𝐿2 𝐴2 
And so the 
 

1 0 . . . 0 
0 1 . . . 0 
0 0 1   0 
.      
.      
0 1𝑛2 0 . . 1 

 
 
1𝑖2    =  (𝑎`𝑖2 / 𝑎`22 ) , I = 2,3,4 ,,,,,,,n 

And so the 
A = 𝐿1𝐴1  =  𝐿1𝐿2𝐴2 
Likewise 
y = 𝐿1𝑦1  =  𝐿1𝐿2𝑦2 
 
where 𝑦2 is the right side after two steps. 
Assuming that there are no substitutions, by repeating the above we can write: 
A = 𝐿1𝐿2 . . . . . . . . 𝐿𝑛−1𝑈 
y = 𝐿1𝐿2  =  𝐿𝑛−1𝐿2𝑧 
 
U: the last superscript. 
Z: the last right-hand side. 
𝐿𝑗: the lower trigonometric matrix. 
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𝐿𝑗  =  
 

1 0 . . . 0 
0 1 . . . 0 
0 0 1 1𝑗+1,𝑗  0 

.   .   

.      
0 0 . 1𝑛,𝑗  . 1 

 
 
 
1𝑖𝑗 :  A multiple of row j which is subtracted from row i during the process of 
reduction. 
Thus: 
 

1 0 . . . 0 
121 1 . . . 0 
131 132 1 1  0 

.   .   

.      
1𝑛1 1𝑛2 . . 1𝑛,𝑛−1 1 

 
 
where L is a lower trigonometric matrix. 
Thus, we find that if the equations are not singular and if we do not need any 
permutations, then :. 
A = LU 
Y = Lx 
where L is a lower trigonometric matrix whose diagonal elements are all ones. 
 and U is a superscript trigonometric matrix. 
 Then we say that the matrix A has been solved (or worked) into two 
trigonometric factors U and L: 
 
Example 4 
 From solving the set of linear equations in Example 1-3 by Gaussian elimination 
method without any permutations of the equations (ie without partial angularity), 
find the matrix of coefficients decomposition into two trigonometric factors L, U. 
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The solution : 
We can summarize the first step of pregnancy by deleting: without partial focus as 
follows: 
 

20 

6 

6 

15 

4 

3 

12 

3 

2 

0 

0 

6 

    

 
 

(-6/20) 

(-6/20) 

20 

0 

0 

15 

-1/2 

-3/2 

12 

-3/5 

-8/5 

0 

0 

6 

     

 
 

 

(-3) 

20 

0 

0 

15 

-1/2 

0 

12 

-3/5 

1/5 

0 

0 

6 

     

        
 
𝐿1  =   

 1 
6/12 
6/20 

0 
1 
0 

0 
0 
1 

 

 
 
𝐿2  =  

 1 
0 
0 

0 
1 

-3/2/-1/2 

0 
0 
1 

 

 
 
L = 𝐿1 𝐿2  =  

 
 

 1 
3/10 
3/10 

0 
1 
3 

0 
0 
1 

 

 
From the last set of equations we have reached, we find that 
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U =  

 
 

 20 
0 
0 

25 
-1/2 
0 

12 
-3/2 
1/5 

 

Z =  
 

 
 0 

0 
6 

 

 
It is easy to verify that A = LU , where 
A =  

 
 

 20 
6 
6 

25 
4 
3 

12 
3 
2 

 

 
So is the 
Lz =  

 
 

 1 
3/10 
3/10 

0 
1 
3 

0 
0 
1 

   0 
0 
6 

  
= 

 0 
0 
6 

  
= 

 
y 
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