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ABSTRACT 

This paper proposes a design that uses a symmetrical arrangement of serpentine springs to create a circular 

plate that can bend out of its plane. The spring system is made up of individual springs that are coupled together 

in a single plane. In this study, three models to determine the spring system stiffness have been developed, 

using the serpentine spring, Sigitta, flexural beam theories, and models of equivalent mechanical springs. The 

results calculated theoretically match those obtained using numerical techniques such as the Finite-Element-

Method (FEM), with a margin of error lower than 10% in the suitable spring's size range. Additionally, the 

proposed spring structure incorporating mechanical coupling proves to be better at reducing mode coupling 

compared to spring structures that do not have any mechanical coupling.  

Keywords; Serpentine Springs, Finite-Element-Method, single plane  ,Sigitta  ,flexural beam theory, 

mechanical coupling 

INTRODUCTION 

A mechanical spring can be defined as a flexible device that is utilised in storing mechanical energy. It is 

typically made from a material that is able to withstand significant deformation, such as steel or alloy wires. 

These springs are essential parts in several applications. For example, in MEMS (Micro-Electro-Mechanical 

Systems) technology, mechanical springs leverage their ability to store and release energy (Guo, et al., 2022). 

Figure 1 illustrates an example of the main components of MEMS devices. 

 

Figure 1: An example of a MEMS device (Guo, et al., 2022) 

One everyday use of mechanical springs in MEMS is as a part of micro-scale actuators, which convert electrical 

energy into mechanical motion on a small scale. These actuators often use electrostatic forces to compress or 

extend a spring, causing it to move (Larkin, 2020).  
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Another essential use of springs in MEMS devices is as a part of micro-scale sensors, which detect physical 

quantities such as acceleration, force, or pressure. These sensors often use the deflection of a spring to translate 

a physical input into an electrical output (Mouro, et al., 2020). Springs are also used in MEMS oscillators, 

which are time-keeping devices that utilize the harmonic motion of a spring-mass system. The resonant 

frequency of these spring-mass systems can be precisely controlled by adjusting the properties of the spring 

and the mass, allowing them to be used as highly stable timing references in electronic systems (Muscat, et al., 

2022). 

In MEMS technology, mechanical springs are engineered for specific types of movement, such as single-axis 

or multi-axis motion, as shown in Figure 2. Various types of springs have been developed to control in-plane 

motions in these devices. The mechanical springs can be customized to comply with linear movements in the 

x or y-axis (Zang, et al., 2019). 

 

Figure 2: Types of motion (Mouro, et al. 2020) 

In the design of these devices, the springs typically consist of straight beams. Some designs incorporate 

serpentine beams, allowing more significant movement in the x and y axes. Both straight and serpentine beams 

have also been used for rotational motion (Calmé, et al., 2022). Typically, the individual spring components 

are separate from one another, with one end linked with a proof mass or structure and the other end fixed to 

the substrate. Straight beam springs are commonly employed for motion in the out-of-plane z-axis, but their 

displacement range is limited (Rao, et al., 2019). 

To increase the range of motion for micro-actuators’ out-of-plane movement, and keep the device size small, 

both spiral springs and serpentine beams have been developed. When designing micro-actuators, it is essential 

to carefully select the stiffness of the suspending springs to achieve the desired operational frequency range 

and actuation voltage. The sensitivity of mechanical sensors is dependent on the stiffness of the suspending 

springs. The dissimilar devices have various requirements for the operational frequency range. 

Inertial switches require a quick response time, typically on the order of microseconds, which translates to 

operational frequencies in the hundreds of kilohertz. Furthermore, the range of operational frequency for the 

MEMS accelerometers is between 0.1 Hz and 104 Hz, and they can be used for several applications, including 

inertial navigation, as well as monitoring explosions (Hu, et al., 2021). Different theories, such as the elastic 

straight beam theory, the Sigitta spring theory, and the serpentine spring theory, have been used for assessing 

the suspending spring’s stiffness. Recently, a new actuator design that permits out-of-plane movement has been 

suggested and analysed using the FEM (Buśkiewicz, 2022). 

Furthermore, by using a spring design that consists of straight beams surrounding the square plate and 

connected, it is possible to expand the operational frequency range while reducing the influence of unwanted 

oscillation modes on the operation. 

Despite some advancements, there is still limited research on the use of coupled curve springs, as well as the 

related theoretical models necessary to evaluate these systems’ stiffness, particularly for the low-noise 

mechanical sensors and low-mode cross-talk micro-actuators purposes. This study introduces a new spring 

system design that is organized surrounding a circular plate and is acquiescent to the out-of-plane z-axis 

fluctuations.  

In this study, we utilize a design that employs individual serpentine beam springs that are connected to one 

another in order to decrease unwanted oscillation modes though still allowing for compliance in the z-axis 

oscillation. The spring design performance is evaluated using the FEM, which will be compared with several 
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similar structures of spring that do not have mechanical coupling. Additionally, we develop theoretical 

mechanical models to calculate the spring system stiffness and compare the results obtained from these models 

to the FEM numerical solutions.  

SPRING MODEL COMPLIANT TO OUT-OF-PLANE Z-AXIS OSCILLATION 

Six serpentine springs are composed of a coupled spring, which is arranged symmetrically around a certain 

plate to form a circular system (spring system), as represented in Figure 3. Several serpentine springs will be 

connected at meandering circular/beam arcs. For clarification, this type is known as Type A. In Figure 3 part 

(a) and Figure 3 part (b), the characteristics of Type A are depicted. The measurements of the width and 

thickness of the circular arcs in the spring are clarified in Figure 3. In addition to the distance between the arcs 

of the serpentine spring, which is known as the length of the beam interconnecting in serpentine spring. 

Additionally, the figures show the gap between the spring arcs, as well as the radius of the centre plate is also 

represented in the figures and is equal to 50 µm. 

 

Figure 3: Suggested coupling spring in curved beams in addition to design parameters. 

The effect of spring behaviour coupling is investigated based on making a comparison between two similar 

springs which do not have coupling between the springs circular as clarified in Figure 4. Figure 4 part (a) 

represents a spring similar what is represented before. Nevertheless, Type B involves removing the connections 

of the spring circular arc.  Figure 4 part (b) is similar to Figure 4 part (a). Another case, the serpentine springs 

are not axial symmetry, in addition, this case owns a rotational symmetry, which is known with Type C. Type 

B and Type C are used previously in several studies which are (Dimian & Bildea, 2014) (Hu, et al., 2012) 

(Wai-Chi, et al., 2010). 

 

Figure 4: Axial symmetry spring system where (a) rotational symmetry and (b) six-serpentine springs 

involved in the arcs of circular spring. 

Additionally, the range of frequencies that a MEMS device can operate at varies depending on the application 

(Tu, et al., 2019) (Liu, et al., 2022) and (Jangra, et al., 2021). The frequency at which a MEMS device operates 

is determined by the dimensions of its spring. While these dimensions can be adjusted or the length of the 

spring can be increased through adding further stages, the spring couplings’ ability in suppressing mode 

a) b) 
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coupling is maintained when compared to similar spring systems without coupling. For this reason, this study 

utilizes a three stages-spring system as illustrated in Figure 3 and Figure 4. 

THE STIFFNESS OF SPRING SYSTEMS CALCULATION  

A. An approximate method of straight beams connected in series 

This model is made up of multiple elements connected in both series and parallel. The ability of the coupling 

spring to resist deformation is calculated using this representation, as it determines its stiffness. 

𝐾𝑡 = 6 × 𝐾𝑏  (1) 

In this context, the term 𝐾𝑏 refers to the single serpentine spring stiffness, which is multiplied by 6 that 

indicates the number of serpentine springs.  Per the current design, all serpentine springs are composed of 3-

circular arc segments. Therefore, the stiffness of 𝐾𝑏 is calculated using the current design by Equation (4).  

1

𝐾𝑏

=  ∑
1

𝐾𝑖

𝑛

𝑖=1

 
 (2) 

The term 𝐾𝑖 represents the 𝑖𝑡ℎ stiffness for a circular arc spring, and the term 𝑛 denotes a serpentine spring that 

comprises (𝑛) circular arc segments. It is possible to approximate the 𝑖𝑡ℎ circular arc as a straight beam with 

an effective length of (𝑙𝑖). The ability of this 𝑖𝑡ℎ straight beam spring to resist deformation is represented by 

its stiffness, which can be determined using this Equation (Hibbeler, 1994). 

𝐾𝑖 =  
3𝐸𝐼

𝑙𝑖
3  

 (3) 

This Equation is often used in the field of mechanical engineering to approximate the circular arc spring’s 

stiffness as a straight beam spring. The Equation relates the stiffness of the 𝑖𝑡ℎ straight beam spring (𝐾𝑖) to its 

moment of inertia (𝐼) and Young's modulus of the spring material (E), as well as the effective length of the 𝑖𝑡ℎ 

spring (𝑙𝑖). 

In Equation (3), the straight beam spring’ moment of inertia is represented by the variable (𝐼), which is 

calculated as the product of the width of the spring (𝑤) and the cube of the thickness of the spring (𝑡) divided 

by 3, 𝐼 = 𝑤𝑡3 . The variable (𝐸) represents the spring material’s Young's modulus, which is a measure of its 

stiffness. In the case of a spring made from silicon, the value of (𝐸) would be equal to 1.69 x 1011 Newton’s 

per meter. The frequency at which the coupling spring oscillates when not under any external force, known as 

the natural frequency, is determined by certain factors. 

𝑓 =
1

2𝜋
√

𝐾𝑡

𝑚
 

Equation (4) 

In this context, the variable m represents the total mass of the suspension system, which includes both the 

serpentine spring beams, as well as the central plate. The value of (𝑚) is determined by using Equation (5).  

m = mplate +
13

35
 mbeam 

Equation (5) 

The formula mentioned here is used to determine the total mass of the suspension system. The variable mplate 

represents the mass of the central plate and the variable mbeam represents the total mass of all the serpentine 

spring beams. These two values are used to calculate the overall mass of the suspension system; the following 

two formulas are used to calculate mplate and mbeam. 

𝑚𝑝𝑙𝑎𝑡𝑒 =  𝜌𝑉𝑝𝑙𝑎𝑡𝑒 =  𝜌𝜋𝑅2𝑡 Equation (6) 

𝑚𝑏𝑒𝑎𝑚 = 6𝜌 ∑ 𝑉𝑏𝑒𝑎𝑚−𝑖 = 𝜌𝜋𝑅2𝑡

6

𝑖=1

 

Equation (7) 

 The variable 𝑉𝑏𝑒𝑎𝑚−𝑖  represents the volume of the 𝑖𝑡ℎ beam, which is calculated by multiplying the beam 

length (𝑙𝑖), the beam width (𝑤) and the thickness of the beam (𝑡). Both the width and the thickness of the 

beams are the same for the two designs, but the beam length is different. The variable (𝜌) represents the 

material density. The circular arc spring length is determined using Equation (8).  
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𝑙𝑖 = 𝑟𝑖𝛽 Equation (8) 

The variable (𝑟𝑖) represents the radius of the 𝑖𝑡ℎ spring arc. The radius is calculated by adding the value of 𝑅, 

which is a constant, to the product of 𝑖 (the index of the spring arc), the sum of the inner beam length (LIB) 

and the spring width (𝑤). In this study, the angle between the centre of the arc and the tangent of the arc is 

assumed to be 60 degrees, represented by the variable beta (𝛽). 

B. Equivalent Sigitta spring system method 

The Equivalent Sigitta spring system is an approach for modelling and studying the performance of mechanical 

springs. This approach utilizes a representation of Sigitta springs, smaller unit springs. These springs are 

combined in a specific configuration, either parallel or series. Accordingly, the overall spring is depicted. 

Spring stiffness and other structural parameters are used to compute the behaviour of the spring. 

In this approach, a representation of an equivalent spring is presented in Figure 5, which is comprised of three 

parts, Figure 5 part (a), Figure 5 part (b), and Figure 5 part (c). Figure 5 part (a) depicts the individual 

components of the spring, known as unit Sigitta springs. Figure 4 part (b) illustrates how these unit springs are 

linked in a series configuration. Lastly, Figure 5 part (c) represents the overall shape of the spring, known as a 

Sigitta-shaped spring, and the parameters used to calculate its stiffness.  

In the current research, the mechanical structure comprises three component springs, as represented in Figure 

5 part (b), in which these components are in a parallel configuration.  

 

 

Figure 5: An equivalent Sigitta spring system represented as a coupled spring that breaks it down into 

individual spring components connected in series. 

Thus, the overall stiffness of the spring is determined by combining the stiffness of the three component springs 

in parallel is represented as follows: 

𝐾𝑡𝑠 = 3 × 𝐾3𝑠𝑠𝑠 Equation (9) 

Noting that, the spring’s total stiffness represented in Figure 4b (𝐾3𝑠𝑠𝑠) is determined by Equation (10). 

1

𝐾3𝑠𝑠𝑠

=
1

𝐾1𝑠

+
1

𝐾2𝑠

+
1

𝐾3𝑠

 
Equation (10) 

The stiffness of each Sigitta spring (𝑘𝐼𝑆) is calculated as follows, noting that: 

a) 

b) 

c) 
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𝑖: 1, 2, or 3.  

𝐺: shear modulus, which equals 
𝐸

2(1+𝑣)
.  

𝑣: Poisson’s ratio. 

𝑙1𝑠𝑖: the connecting beam’s length. 

𝑙2𝑠𝑖: the circular arc spring.  

𝑙3𝑠𝑖: the length, which equals 𝑤 +  𝐿𝐼𝑆. 

𝐼𝑦: the y-axis moment of inertia, which equals 
𝑤×𝑡3

12
. 

𝐼𝑦: the z-axis moment of inertia, which equals 
𝑤×𝑡3

3
. 

𝛼: 30𝑜 . 

Accordingly, the stiffness of each Sigitta spring (𝑘𝐼𝑆) is given by Equation (11): 

𝑘𝐼𝑆 = 12{[6(𝑙3𝑠𝑖 − 2𝑐𝑖)
2𝑠𝑖𝑛2𝛼

+ 2(𝑙1𝑠𝑖 + 2𝑙3𝑠𝑖 sin 𝛼)[𝑙1𝑠𝑖 cos 𝛼

+ (2𝑙1𝑠𝑖 cos 𝛼 + 𝑙3𝑠𝑖 − 2𝑐𝑖) sin 𝛼] cos 𝛼]/(𝐺 𝐼𝑡) + [6𝑙1𝑠𝑖
2 + 14𝑙2𝑠𝑖

2

+ 3(𝑙3𝑠𝑖 − 2𝑐𝑖)
2 + 3[(𝑙3𝑠𝑖 − 2𝑐𝑖)

2 − 2(𝑙1𝑠𝑖
2 + 𝑙2𝑠𝑖

2)] cos 2𝛼

− 6(2𝑐𝑖 − 𝑙3𝑠𝑖)(𝑙2𝑠𝑖 − 2𝑙1𝑠𝑖 sin 𝛼) cos 𝛼 + 6𝑙2𝑠𝑖[(𝑙3𝑠𝑖 −  2𝑐𝑖) cos 3𝛼
+ 𝑙2𝑠𝑖 cos 4𝛼 +  4𝑙1𝑠𝑖  𝑠𝑖𝑛𝛼 −  2𝑙1𝑠𝑖𝑠𝑖𝑛3𝛼]]/(𝐸𝐼𝑦)}−1/𝑙2𝑠𝑖  

Equation (11) 

Furthermore, the 𝑐𝑖 parameter is computed as presented in Equation (12). 

𝑐𝑖 =

{
𝐺𝐼𝑡[𝑙3𝑠𝑖 cos 𝛼 + 𝑙2𝑠𝑖 cos 2𝛼] cos 𝛼

+(𝐸𝐼𝑦 − 𝐺𝐼𝑡) 𝑙1𝑠𝑖 sin 𝛼 cos 𝛼 + 𝐸𝐼𝑦(𝑙3𝑠𝑖 + 2𝑙2𝑠𝑖 cos 𝛼)𝑠𝑖𝑛2𝛼
} 

2(𝐺 𝐼𝑡  𝑐𝑜𝑠2𝛼 +  𝐸𝐼𝑦  𝑠𝑖𝑛2𝛼)
 

Equation (12) 

C. The equivalent serpentine spring system 

This system is an approach for spring representation by using multiple identical serpentine springs linked in 

parallel. Thus, the total spring stiffness is computed by multiplying the stiffness value of each individual spring 

component by the number of serpentine springs used in the system. This approach involves the study of the 

overall spring as comprised of six similar springs connected in a parallel configuration. Figure 2 represents the 

single serpentine spring, and 𝑙𝑖 considered below is the length of the 𝑖𝑡ℎ arcs. The total stiffness of the spring 

(𝐾𝑡𝑠) is computed by multiplying the stiffness of each individual spring by six, in which the stiffness of every 

individual serpentine spring is known as (𝐾𝑧𝑠) and represented in Equation (13). Knowing that the ℎ parameter 

is determined by Equation (14).  

𝐾𝑧𝑠 =  
1

{∑ (60𝑛) × (√
𝑛𝑤√𝐿𝐼𝐵

𝑙𝑛𝑡
 ) × (

𝑙𝑛
2

𝐺ℎ
) × (

𝐺ℎ

𝐸𝐼𝑦
𝑙𝑛 + 3 𝐿𝐼𝐵)3

𝑛=1 }

 
Equation (13) 

ℎ = 𝑡 𝑤3 {0.333 − 0.21
𝑤

𝑡
(1 −

𝑤4

12 𝑡4
)} 

Equation (14) 

 

 

RESULTS AND DISCUSSION 

The study presents the results of simulating the behaviour of spring systems in various operating modes. The 

mechanical connection between the out-of-plane oscillation mode at z-axis and the closest oscillation mode 

is evaluated based on these simulations.  
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A. Results  

The simulation uses spring parameters of 𝑅 = 50 𝜇𝑚, 𝑤 = 20 𝜇𝑚, 𝑡 = 10 𝜇𝑚, 𝐿𝐼𝑆 = 10 𝜇𝑚 and 𝐿𝐼𝐵 =
20 𝜇𝑚. To examine the impact of mechanical coupling, the frequency variation among the operating mode 

(mode z) and the second mode (mode 2) is considered.  

𝛿𝑓 = (( 𝑓𝑀𝑜𝑑𝑒2 − 𝑓𝑀𝑜𝑑𝑒𝑍)/𝑓𝑀𝑜𝑑𝑒𝑍) ∗ 100% Equation (15) 

The percentage of coupling between different operating modes in the system is type A (𝛿𝑓-type A) is 60.8%, 

type B (𝛿𝑓-type B) is 52.8%, and type C (𝛿𝑓-type C) is 53.1%. This ensures that there is mechanical isolation 

between the operating mode and neighbouring modes. 

of-plane oscillation mode at 𝑧-axis, and (d) to (f) are the second modes. The system parameters for the spring 

are specified as 𝑅 = 50 µm, 𝑤 = 20 µm, 𝑡 = 10 µm, 𝐿𝐼𝑆 = 10 µm, as well as 𝐿𝐼𝐵 = 20 µm. 

To evaluate the performance of three different spring types, the effect of mode coupling will be examined by 

analysing the relationship between 𝛿𝑓 and the representative dimensions of the spring. Specifically, we will 

vary the width 𝑤 of the spring between 2 µm and 20 µm besides keeping the other parameters fixed. The 

results of this investigation are presented in Figure 6 and Figure 7. Figure 6 part (a) and Figure 6 part (b) 

displaying the frequencies of mode 𝑧 and mode 2, while Figure 7 part (a) and Figure 7 part (b) displaying the 

mode 𝑧 and 𝛿𝑓 stiffness for each of the studied spring types. 

 

 
 

Figure 6: (a) z-mode frequency, (b) mode 2 frequency. 

 

 
 

Figure 7: (a) z-mode stiffness (b) 𝛿𝑓 for the three types of the proposed springs as a function of 𝑤. 

 

Accordingly, the set frequencies for the distinct three types of spring could be altered from 70000 Hz to 

260000 Hz for the first type, "Type A", while for the second and third types "Type B and Type C", the 
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frequencies can be altered from 55000 Hz to 220000 Hz. For mode z, the frequency characteristic starts 

increasing till reaching the maximum. Then, it then starts to be decreased gradually when the circular arc 

width increases. The outcomes showed that both of Type C and Type B have the same 𝛿𝑓 and frequencies. 

Particularly, when the arc of the circular spring increases, the corresponding 𝛿𝑓 of Type A will decrease with 

a percentage greater than 60%. 

In this investigation, the thickness of the circular arc spring, represented by (𝑡), ranges between (2 and 20) 

µ𝑚 while other parameters were fixed, as represented in Figure 5. Furthermore, the results obtained are shown 

in Figure 8 and Figure 9.  

Additionally, it was found that the z-mode and mode 2 operating frequencies, besides the frequency difference 

(𝛿𝑓) for type B and type C, remained the same within the investigated range of 𝑡. However, for type A, 𝛿𝑓 

increased linearly from 75% to 90% with increasing the 𝑡 value from (2 to 20) µ𝑚. On the other hand, for 

type B and type C, 𝛿𝑓 decreases from around 65% to 5% for the same 𝑡 values.  

 

 
 

Figure 8: (a) z-mode frequency, (b) mode 2 frequency. 

 

 
 

Figure 9: (a) z-mode stiffness (b) 𝛿𝑓 for the three types of the proposed springs. 

 

Based on the obtained results in Figure 8 and Figure 9, it was found that a proportional relationship is noticed 

between 𝑡 and z-mode oscillation frequency for the spring types. The operating frequency range is different 

for the three types, as follows: 
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• Type C: ranges between (50 and 310) kHz.  

 

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

FZ
 (

K
H

z)

Time (Micro-Meter)

Type A Type B Type C

a)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

F 
M

o
d

e
 2

 (
K

H
z)

Time (Micro-Meter)

Type A Type B Type C

b)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

K
Z(

N
/M

)

Time (Micro-Meter)

Type A Type B Type C

a)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

FS
 (

%
)

Time (Micro-Meter)

Type A Type B Type C

b)



9 
 

Then, the behaviour of all the different spring types will be examined as the length of the spring's inner 

boundary (𝐿𝐼𝐵) ranges between 2 µ𝑚 and 20 µ𝑚, while all other parameters have not changed. The simulation 

findings, provided in Figure 10 and Figure 11, indicate that the increase in (𝐿𝐼𝐵) leads to increase the spring's 

circular arc length, and decreasing the oscillation frequency of the studied spring types. Also, the z-mode 

frequency alteration range is as follows for the three different types. 

• Type A is around 600 kHz. 

• Type B is around 550 kHz. 

• Type C is around 550 kHz. 

The operation frequency values of both type B and C remains the same. However, a separation is included in 

their 2nd oscillation mode, as shown in Figure 10b. The relative frequency change (𝛿𝑓) of type A is greater 

than 60% and increases to reach 78% as 𝐿𝐼𝐵  starts at 2 µm to reach 20 µm. The contrary was for the 𝛿𝑓 values 

for Type B and Type C, in which they decrease with increasing the 𝐿𝐼𝐵 value. Additionally, they are always 

less than the values of type A. 

 

 
 

Figure 10: (a) z-Mode frequency, (b) mode 2 frequency. 

 

 
 

Figure 11: (a) mode z stiffness (b) 𝛿𝑓 for the three types of the proposed springs as a function of 𝐿𝐼𝐵. 
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delta 𝑓 value greater than 75% that increases regularly to reach 85% as the 𝐿𝐼𝑆 increases between 2 

micrometers and 20 micrometers. Otherwise, the increase in 𝐿𝐼𝑆 leads to decrease the delta f value for Type 

B and Type C. 

Hence, the obtained results from Figure 6 through Figure 13 showed that Type A spring has 𝛿𝑓 that is superior 

compared with the rest types. Furthermore, the behaviour of Type C and Type B is not altered depending on 

the springs arrangement. Hence, when coupling bars within a single serpentine spring is used in the plane, the 

resistance of Type A is increased while the set operating frequency is the same of Type B and Type C. 

 

 
 

Figure 12: (a) Mode z frequency, (b) mode 2 frequency. 

 

 
 

Figure 13: (a) mode z stiffness (b) 𝛿𝑓 for the three studied types of the proposed springs as a function of 𝐿𝐼𝑆. 

 

B. Comparison 

In the previous section, the simulation outcome of the three studied types of spring were shown, with Type A 

displaying more efficient characteristics when compared to the other types (Types B and Type C). 

Additionally, the Type B performance was found to be like Type C performance.  

In this section, the computational models will be used for designing micro-actuators using spring types A, B, 

and C. To make it easier to compare the different models, we will use the following symbols to represent 

them: 

The variance among the two gathered natural frequencies, which are the calculated frequency (𝑓𝑐) and the 

FEM natural frequency (𝑓𝑚), depending on three different calculation methods (method-1, method-2, and 

method-3) is represented by (Δ𝑓 1-A), (Δ 𝑓 2-A), as well as (Δ𝑓 3-A), regarding Type A, On the other hand, 
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(Δ𝑓 1-B) and (Δ𝑓 3-B) represents the variance between 𝑓𝑚 and 𝑓𝑐 based on (method-1 and method-2) 

regarding Type B. Accordingly, the variance between 𝑓𝑚 and 𝑓𝑐 can be evaluated using the following 

formula:  

 𝛥 𝑓 𝑖 − 𝐴(𝐵)  =  (𝑓𝑐 − 𝑓𝑚)/ 𝑓𝑚  ×  100% 

Next, we will examine the scenarios of changes in the spring’s dimensional parameters, as investigated 

through FEM previously.  A comparison between the calculated results by the models and the results obtained 

by FEM.  

Figure 10 shows Δ𝑓 errors in the numerical and analytical results. Figure 10 part (a) provides that regarding 

the beam width, the error ranges from 2 to 6 μm, which is greater than 20%. On the other hand, between 8 

and 20 𝜇𝑚, the resulted error was lower than 10%. Whereas when the width of the beam is altered, the Sigitta 

model aligns with the interconnected springs' structure, while the model for straight beams and springs is 

appropriate for the independent springs structures. 

 
Figure 14: Comparing the outcome of calculating the natural frequency by utilizing the theoretical models 

outlined in Section 2 with the previous numerical methods based on the springs’ dimensions. 

 

The study's results compare the accuracy of two models for simulating the behaviour of springs: In the case 

of the coupled spring structure, the most suitable model to be used is the Sigitta model, whereas in the case 

of the uncoupled spring, the most suitable model is the straight beam spring model. The study found that 

when the thickness of the beam changes, the calculation error using the Sigitta model is less than 15% 

compared to the straight beam spring model, as shown in Figure 10 part (b). The difference between the two 

models ranges from 5-25%.  

The study also found that as the length of the interconnection between the beams changes from 2 to 10 

micrometres, the difference in the results (Delta f) is greater than 20%, as shown in Figure 10 part (c). 

However, as the length increases from 14 to 20 micrometres, the (Delta f) decreases to less than 10%. Lastly, 

the study found that the change in the coupling length between the spring’s changes, the variation between 

the straight beam spring model, as well as Sigitta model is lower than 10%, and the Delta f values utilising 

the straight beam spring model in both uncoupled and coupled spring are more than 15%. 

The comparison in the previous research released that the Sigitta model is appropriate for simulating the 

behaviour of coupled springs, whereas the model of the straight beam spring is better suited for simulating 

uncoupled springs. Both models demonstrated low calculation errors (less than 10%) when the width of the 

beam was between 8-20 micrometres, the thickness of the beam between 2-20 micrometres, the length of the 

connection between circular spring arcs varied between 12-20 micrometres, and the length of the coupling 

between two serpentine springs was varied between 2-20 micrometres. This is likely because the model of 

the straight beam spring does not consider the coupling between serpentine springs, whereas the Sigitta model 

considers this effect. Additionally, the Sigitta model also accounts for the angular deflection, which is denoted 
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by (𝛼) of the spring beams as shown in Figure 4 part (c), which makes it more appropriate for simulating the 

spring structure than the approximate straight beam spring model. 

 

CONCLUSION 

In this study, a model for a coupled spring system has been developed that focuses on reducing out-of-plane 

oscillation though suppressing other oscillation modes. This model has been shown to be more effective than 

similar spring systems that do not have coupling among the spring beams components. Furthermore, the 

coupling spring system has a greater variance between its operational frequency and several adjacent modes, 

which is larger than 60%. Additionally, this system has a wide range of operational frequencies, from 70 kHz 

to 900 kHz. Furthermore, in this work, methods for estimating the spring system’s natural frequency have been 

developed, and it was found that the Sigitta spring model is appropriate to be used with the coupled spring 

structure, although the model of straight beam spring is appropriate for the uncoupled spring structure. 
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