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Abstract 

Fatigue and drowsiness are responsible for a significant percentage of road traffic 

accidents. There are several approaches to monitor the driver’s drowsiness, ranging from 

the driver’s steering behavior to analysis of the driver, e.g. eye tracking, blinking, yawning 

or electrocardiogram (ECG). This paper describes the development of a low-cost ECG 

sensor to derive heart rate variability (HRV) data for the drowsiness detection. The work 

includes the hardware and the software design. The hardware has been implemented on an 

Arduino using ECG AD 8232 model attached to a Raspberry Pi device for processing 

purposes. The digital ECG signal is transferred to a Raspberry Pi embedded PC where the 

processing takes place, including QRS-complex, heart rate and HRV detection as well as 

visualization features. The compact resulting sensor provides good results in the extraction 

of the main ECG parameters. Different machine learning algorithms are implemented to 

classify the ECG signals into mainly two categories (Sleep and Awake). Support Vector 

Machine using the Radial Bias Function Kernel (RBF) achieved accuracy of 95% in 

inference stage. Another Decision Tree classifier has been also designed and also produced 
a high accuracy of 98% during the evaluation phase. 

Keywords: Machine Learning, Signal Processing, Feature Extraction, ECG Signals, 
Drowsiness Detection, Safety, Roads Safety, SVM, Decision Tree, RBF Kernel 

1- Introduction  

Safety driving is one of the most required factors and services now days in car production 
and development society. Mega auto mobile manufacturing companies are trying to 
provide a very big added value to their systems in order to ensure the highest safety and 
security for drivers and people using the cars. Drivers fatigue is estimated to cause more 
than 10% of traffic accidents based on the USA reports showing that between 10% and 
25% of accidents happening in the USA are caused by drivers’ fatigue or driver sleepiness. 
The increasing number of accidents caused by fatigue drivers has enforced the institutions, 
vehicle developers and manufacturers to find a reasonable solution for this issue and 
provide a reliable technology to be attached and installed on their car’s prototypes to warn, 
notify and wake up the driver once the drowsiness has been detected. Another relevant 
context can be also the development of the self-driving cars where the service of driver 
drowsiness detection can be also plugged and used to provide another high quality and 
valuable factors to the self-driving cars. In this paper, it is targeted to design, develop and 
implement a standalone system that can deal and interact with different electrical, 
electronic devices and software solutions to detect and specify if the driver in fatigue mode 
or sleepiness mode. This system should be depending on different technologies and 
methods in order to finalize the requirements using different mathematical models and 
hardware prototypes. Different approaches also have to be discovered and well-studied 
suck like developing smart based system depending on Machine Learning and 
Signals/Image processing, or developing a fully hardware based solution using different 
sensing mechanisms to interact with the driver and specify the drowsiness case. Another 
factor is also to be achieved is to build, design and implement a warning/notification 
system that can notify the driver at least once the drowsiness case has been detected. 
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Expected to have a final prototype that can detect drowsiness, notify driver and realize the 
most important safety factors for the driver and anyone using the car. 
 

 

2- Related Work 

In 2008, Hong Su et. al. [1] described ‘A Partial Least Squares Regression-Based Fusion 

Model for Predicting the Trend in Drowsiness’. “They designed and implemented a new 

method of characterizing driver drowsiness with a set of multiple eyelid movement 

features generated by a set of fusion sensors based on an information fusion technique-

partial least squares regression (PLSR), in order to discover the strong relations among 

eyelid movement patterns and, the tendency of the drowsiness. The predictive PLSR model 

could perform properly on the extracted features coming from the eyelid fusion sensors 

readings and could as well finalize an acceptable accuracy of drowsiness detection up to 

95%. In June, 2010, Bin Yang et. al. [2] described ‘Camera-based Drowsiness Reference for 

Driver State Classification under Real Driving Conditions’. “They have design a computer 

vision based solution monitoring the driver’s face and detecting the eye movements using 

different image processing and machine learning models to extract eyes, ears and mouth of 

driver to classify the status of both eyes of the driver (Closed, Open). The Cascade Face 

Mask model has been used to detect the face, eyes, ears and mouth of the driver and then a 

simple machine learning model has been trained using Support Vector Machine (SVM) did 

the classification process and classified all incoming frames from camera into (Sleep or 

Awake). As a summary, the camera based sleepiness measures provide a valuable 

contribution for a drowsiness reference, but are not reliable enough to be the only 

reference. In June, 2012, A. Cheng et. al. [3] described 'Driver Drowsiness Recognition 

Based on Computer Vision Technology’. “They designed a stable drowsiness recognition 

system using eye-tracking and image processing. A stable and robust eye detection 

algorithm is designed to address the problems caused by changes in illumination and 

driver posture. Six different values are calculated among with percentage of eyelid closure, 

maximum closure duration, blink frequency, average opening level of the eyes, opening 

velocity of the eyes, and closing velocity of the eyes. These measures were combined using 

Fisher’s linear discriminated functions based on a stepwise kernel method to reduce the 

correlations. The system has been tested using a driving simulator and the results could 

achieve 86% of accuracy using six different drivers. In June, 2014, Eyosiyas et. al. [4] 

described ‘Driver Drowsiness Detection through HMM based Dynamic Modeling’. “They 

have designed a completely new approach for analyzing facial expressions of the driver 

using Hidden Markov Model (HMM) to detect drowsiness. The complete design and system 

were implemented using a virtual simulated driving environment and the overall system 

accuracy achieved over 90% of classification rate.  
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3- Methodology 

A. Design Overview 

Our proposed solution was designed based on the ECG module Ad8232 heart signal 

recorder. Which is communicating with an Arduino microcontroller in which the signal is 

being sent over USB serial port to a Raspberry Pi computer where all of the processing, and 

decision making procedures are implemented. Below we present the high level design of 

entire solution and explaining each block in details: 

START
Reading ECG Signal by 

Ad8232 on Arduino
Sending ECG signal over 

USB port to RPI
Receiving and Decoding 

the ECG signal on RPI
Preprocessing the ECG 

Signal (Filters)

Extracting Features (MIN, 
MAX, MEAN, etc) From R-

Peaks (Time and Freq.)

Constructing Features 
Dataset (Labeled )

Training SVM and DT 
Models on Features 

Dataset

Evaluating SVM and DT 
Models

END

 

Figure (1). System High Level Diagram 

B. Generating ECG Signal 

The selected ECG module is connected on 2 digital pins (10, 11) as well as on any 

analog pin (A0) where the analog signal produces the signal of ECG and the digital ports 

applying the pulse train job in order to construct a sin-wave signal. All readings coming 

from the module are in range of 0-1023 value (0-5 volts). This signal is being taken by 

Arduino. The Arduino device is connected with a Raspberry Pi-4 (RPI) computer over an 

USB cable on USB port where the signal of ECG is written as a serial byte array with 10 

millisecond delay for stability purposes. The RPI device receive the signal as a byte array, 

so the RPI applies a decoding processes in order to retrieve the numerical data signal and 

store it in a vector data structure. The following fig (2) shows the circuit connections 

including all components used in our project and its schematic diagram as well 

 

Figure (2). Circuit Diagram 
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The following table includes all components with all connection specifications: 

Component Input / 
Output 

Digital / 
Analog 

Pin Power 

Raspberry Pi 
4 Model B 

Both Both - 12v 

ECG Ad8232 Input Analog/Digital Analog – A0 
Digital (10-11) 

5v 

Digital Buzzer Output Digital D4 5v 
Arduino Uno 
R3 

Both Both - 5v 

Table (1). Components Table 

Using the ECG-Ad8232 module and Arduino MCU, we have recorded 100 ECG signals from 

5 different drivers in awake mode as well as 20 signals from single driver in sleep mode. 

These signals are saved and stored locally on the Raspberry Pi device where they are used 

in the further features extraction, training and testing processes. The sampling rate of each 

recorded signal is 256Hz as well as each ECG recorded signal contains 5000 samples in 
range of [0-1023] as per the ECG module specifications.  

C. Preprocessing ECG Signal and Peaks Calculation 

In this stage the signal is received and decoded properly. Not all ECG signals are 

coming in best form with 0 noise. That’s why we have to apply a kind of cleaning process on 

the signal to remove any possible noise. 4 different filters where combined and used 

together to remove any possible noise (Low-Pass, High-Pass, Band-Pass, Notch) filters. 

Once the ECG signal has been filtered and all possible noise are eliminated, then a kind of R-

Peaks models is implemented to extract the peaks vector of the signal from time domain 

and frequency domain. All sleeping features are expected to located in this peak vector. 

Figure (3 and 4), present a sample of a filtered ECG signal with all related R-Peaks values in 

time domain from awake and sleeping drivers’ signals. 
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Figure (3). Filtered ECG with R-Peaks Indices from Awake Signal in Time Domain 

 

Figure (4). Filtered ECG with R-Peaks Indices from Asleep Signal in Time Domain 

D. Extracting Statistical Features/Creating Dataset/Features Normalization 

From the peak vector, the following statistical values (MAX, MIN, MEAN, MEDIAN, STD) 

are calculated from the Peak-Time-Domain and Peak-Frequency-Domain. Each Feature’s 
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vector extracted from each received signal is being stored in a Dataset with its related 

binary label (0 or 1) (sleep or awake). This dataset will be used in the training phase. A Z-

Score normalization model has been applied on the training dataset so that we ensure the 

features consistency and stability. Below in Table (2) we show a capture of some basic 
statistics about the generated and normalized training dataset. 

 

Table (2). Summary statistics about the normalized training dataset 

E. Training and Evaluating SVM and DT models 

once the dataset is created, a Support Vector Machine learning model with an RBF 

Gaussian Kernel is designed and implemented to train over the dataset and construct a 

trained model for further classification and testing purposes. Another Decision Tree based 

model is also created and trained over the training dataset to provide more stability to our 

proposed design. Both models are saved locally and used in further evaluation processes. 

Once the SVM and DT models are trained and stored locally, the system will start receive 

new signals from the ECG device and apply on them all previous stages (filtering, features 

extraction) and then apply the SVM trained model to find the label (0 or 1) (sleep or 

awake). The below flowchart describe the entire training process: 
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START

Initialize GPIO

Initialize Serial

Read 5000 ECG 
samples

Decode ECG samples

Filter ECG signal

Convert ECG signal 
into freq. domain

Calculate Peaks

Extract Stats Features 
from Time/Freq. 

Domains

Construct Features 
vector

Append Features 
vector to Dataset

Dataset Completed?

Train SVM/DT SVM/DT Trained?

Save SVM/DT models 
locally

No

Yes

Yes

No

END

 

Figure (5). ML Training Process on RPI 

 

List of functions implemented in the training phase are described in the below table: 

Function/Procedure Input Output Description 
createDataset Folder Containing 

all recorded ECG 
signals from all 
drivers 

A data frame labeled 
Matrix (Dataset.csv) 

Imports all signals 
recorded from all 
drivers. Applies 
Filters (High, Low, 
Bandpass and 
Notch) on each 
individual signal. 
Converts each signal 
into frequency 
domain. Calculate 
peaks vector. 
Extracts Statistical 
features from time 
and frequency 
domains of peaks 
vector. Store 
features with 
related label into a 
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matrix. Normalize 
the final dataset 
matrix using z-score 
normalization. 
Applies outliers’ 
detection on Dataset 
on each feature. 
Save the Dataset 
locally as “csv” file. 

createMLmodel Training Dataset A stacked struct 
containing SVF-RBF 
kernel trained 
model with DT 
model. 

Imports training 
dataset. Splits 
training dataset into 
70% training and 
30% testing. Call 
built-in SVM model 
with a Gaussian RBF 
kernel and DT 
model. Trains SVM 
model till learning 
rate 0.0000001 
reached. Train DT 
classifier. Validate 
models with 30% 
created testing set. 
Calculates confusion 
matrix for both 
models. Save models 
locally for testing 
purposes. 

Table (3). Functions in Training Phase 

 

The below flowchart describe the entire evaluation process: 
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START

Initialize GPIO

Initialize Serial

Read 5000 ECG 
samples

Decode ECG samples

Filter ECG signal

Convert ECG signal 
into freq. domain

Calculate peaks

Extract stat Features 
from Freq. and Time 

Domains

Construct Features 
vector

Apply SVM and DT 
trained Models

Classification 0? Buzzer OFFYes

Buzzer ON

No

RPI Testing Flowchart

 

Figure (7). RPI Testing Flowchart 

 

List of functions implemented in the evaluation phase are described below 

Function/File Code Input Output Description 
receiveECGsignal Port Address and 

Baud Rate 
An ECG signal vector 
containing 5000 
samples 

Creates a serial 
instance on 
ttyACM0 port 
number and with 
9600 bit/s baud 
rate. Reads 
incoming serial data 
byte by byte. 
Decodes serial data. 
Stores serial data 
into an 
ecg_signal_vector.    

predictDriverStatus Serial ECG signal Predicted driver 
status (0 awake OR 
1 asleep) and Sound 
buzzer output. 

Applies Filters 
(High, Low, 
Bandpass and 
Notch) on ECG serial 
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signal. Converts ECG 
signal into 
frequency domain. 
Calculate peaks 
vector. Extracts 
Statistical features 
from time and 
frequency domains 
of peak vector. 
Stores features into 
a features vector. 
Normalize the final 
features vector 
using z-score 
normalization. 
Imports the trained 
SVM/DT models 
from local drive. 
Calls SVM/DT model 
on Features vector 
instance. Predicts 
the status of driver. 
Runs buzzer in case 
predicted value is 
asleep. 

Table (4). Functions in Testing Phase 

 

4- Classification Results and Discussions  

Two machine learning models were implemented, designed and tuned in order to 

classify the incoming ECG recorded signal from the AD8232 device attached to the driver 

chest. The Decision Tree (DT) and Support Vector Machine (SVM) classifiers perform 

perfectly during the training phase as well as the testing phase. Below we list all evaluation 
criteria, parameters, matrix, and factors.  

A. Accuracy an Area Under Curve (AUC) 

Model Accuracy AUC F1 Prec. 
DT 0.9533 0.9880 0.9535 0.9353 

SVM 0.9621 0.9901 0.9884 0.9533 
Table (5). ACC/AUC Comparison 
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B. Confusion Matrix 

 
Figure (8). SVM Confusion Matrix 

 

 
Figure (9). DT Confusion Matrix 

C. Learning Curve 

 
Figure (10). SVM Learning/Cross Validation Curves 
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Figure (11). DT Learning/Cross Validation Curves 

 

D. Decision Boundaries and Visual Decision Tree 

 
Figure (12). SVM Decision Boundaries 
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Figure (13). DT Decision Boundaries 

 
Figure (14). DT Representation 

Based on all previous evaluation criteria and parameters, we can conclude that both 

models are performing in a very good range with high accuracy and scoring. SVM is 

showing more accuracy and robustness in terms of the AUC and this is because of the 

strength behind the RBF kernel which can deal with different data distributions and 
dimensions.  

 

 



 15 

 

5- Conclusion and Future Works  

Machine learning based solutions provide a huge added value in terms of complex data 

classifications and pattern recognition, in our proposed design, the SVM and DT based 

models could help us potentially by the high dimension of the recorded ECG signal and by 

the very tiny differences between asleep and awake signals. Statistical features have very 

simple and direct format so that they have enriched the design by providing some very 

clear stats about each recorded signal. What we actually have noticed is that the features 

distributions between awake and asleep signals are almost same, but the major difference 

was the power of the statistical features in the asleep signal, in which it was 100 times 

higher than it is in the awake signal. Filtering process is extremely important and highly 

recommended because of the high noise existence inside the ECG signal coming from the 

Ad8232 module, which helps also to reduce the error during the classification and 

prediction process. The communication between Arduino and RPI is done by the USB port 

and was fair enough to finalize the main requirement. Mainly the design is stable and 

accurate, and some points can be added in the future just to improve the design and 

enhance the result of the classifier. Implementing another set of machine learning models 

like ANN and NB can may provide better than SVM accuracy and stability. Changing the 

communication between Arduino and RPI to become wireless can also simplify the 
prototype design at the driver end. 

 

References 

[1] Hong Su and Gangtie Zheng, “A Partial Least Squares Regression-Based Fusion Model 
for Predicting the Trend in Drowsiness” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND 
CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008.  
 

[2] Fabian Friedrichs and Bin Yang, “Camera-based Drowsiness Reference for Driver State 
Classification under Real Driving Conditions” 2010 IEEE Intelligent Vehicles Symposium 
University of California, San Diego, CA, USA June 21-24, 2010.  
 
[3] Zhang, Wei; Cheng, Bo; Lin, Yingzi,” Driver drowsiness recognition based on computer 
vision technology.” Published in: Tsinghua Science and Technology (Volume: 17, Issue: 3) 
Page(s):354 - 362 Date of Publication: June 2012  
 
[4] Eyosiyas Tadesse, Weihua Sheng, Meiqin Liu,” Driver Drowsiness Detection through 
HMM based Dynamic Modeling.” 2014 IEEE International Conference on Robotics & 
Automation (ICRA) Hong Kong Convention and Exhibition Center May 31 - June 7, 2014. 
Hong Kong, China.  
 


