
 1

DRIVER DROWSINESS DETECTION USING

ECG SIGNALS AND MACHINE LEARNING

MODELS

 2

Abstract

Fatigue and drowsiness are responsible for a significant percentage of road traffic

accidents. There are several approaches to monitor the driver’s drowsiness, ranging from

the driver’s steering behavior to analysis of the driver, e.g. eye tracking, blinking, yawning

or electrocardiogram (ECG). This paper describes the development of a low-cost ECG

sensor to derive heart rate variability (HRV) data for the drowsiness detection. The work

includes the hardware and the software design. The hardware has been implemented on an

Arduino using ECG AD 8232 model attached to a Raspberry Pi device for processing

purposes. The digital ECG signal is transferred to a Raspberry Pi embedded PC where the

processing takes place, including QRS-complex, heart rate and HRV detection as well as

visualization features. The compact resulting sensor provides good results in the extraction

of the main ECG parameters. Different machine learning algorithms are implemented to

classify the ECG signals into mainly two categories (Sleep and Awake). Support Vector

Machine using the Radial Bias Function Kernel (RBF) achieved accuracy of 95% in

inference stage. Another Decision Tree classifier has been also designed and also produced
a high accuracy of 98% during the evaluation phase.

Keywords: Machine Learning, Signal Processing, Feature Extraction, ECG Signals,
Drowsiness Detection, Safety, Roads Safety, SVM, Decision Tree, RBF Kernel

1- Introduction

Safety driving is one of the most required factors and services now days in car production
and development society. Mega auto mobile manufacturing companies are trying to
provide a very big added value to their systems in order to ensure the highest safety and
security for drivers and people using the cars. Drivers fatigue is estimated to cause more
than 10% of traffic accidents based on the USA reports showing that between 10% and
25% of accidents happening in the USA are caused by drivers’ fatigue or driver sleepiness.
The increasing number of accidents caused by fatigue drivers has enforced the institutions,
vehicle developers and manufacturers to find a reasonable solution for this issue and
provide a reliable technology to be attached and installed on their car’s prototypes to warn,
notify and wake up the driver once the drowsiness has been detected. Another relevant
context can be also the development of the self-driving cars where the service of driver
drowsiness detection can be also plugged and used to provide another high quality and
valuable factors to the self-driving cars. In this paper, it is targeted to design, develop and
implement a standalone system that can deal and interact with different electrical,
electronic devices and software solutions to detect and specify if the driver in fatigue mode
or sleepiness mode. This system should be depending on different technologies and
methods in order to finalize the requirements using different mathematical models and
hardware prototypes. Different approaches also have to be discovered and well-studied
suck like developing smart based system depending on Machine Learning and
Signals/Image processing, or developing a fully hardware based solution using different
sensing mechanisms to interact with the driver and specify the drowsiness case. Another
factor is also to be achieved is to build, design and implement a warning/notification
system that can notify the driver at least once the drowsiness case has been detected.

 3

Expected to have a final prototype that can detect drowsiness, notify driver and realize the
most important safety factors for the driver and anyone using the car.

2- Related Work

In 2008, Hong Su et. al. [1] described ‘A Partial Least Squares Regression-Based Fusion

Model for Predicting the Trend in Drowsiness’. “They designed and implemented a new

method of characterizing driver drowsiness with a set of multiple eyelid movement

features generated by a set of fusion sensors based on an information fusion technique-

partial least squares regression (PLSR), in order to discover the strong relations among

eyelid movement patterns and, the tendency of the drowsiness. The predictive PLSR model

could perform properly on the extracted features coming from the eyelid fusion sensors

readings and could as well finalize an acceptable accuracy of drowsiness detection up to

95%. In June, 2010, Bin Yang et. al. [2] described ‘Camera-based Drowsiness Reference for

Driver State Classification under Real Driving Conditions’. “They have design a computer

vision based solution monitoring the driver’s face and detecting the eye movements using

different image processing and machine learning models to extract eyes, ears and mouth of

driver to classify the status of both eyes of the driver (Closed, Open). The Cascade Face

Mask model has been used to detect the face, eyes, ears and mouth of the driver and then a

simple machine learning model has been trained using Support Vector Machine (SVM) did

the classification process and classified all incoming frames from camera into (Sleep or

Awake). As a summary, the camera based sleepiness measures provide a valuable

contribution for a drowsiness reference, but are not reliable enough to be the only

reference. In June, 2012, A. Cheng et. al. [3] described 'Driver Drowsiness Recognition

Based on Computer Vision Technology’. “They designed a stable drowsiness recognition

system using eye-tracking and image processing. A stable and robust eye detection

algorithm is designed to address the problems caused by changes in illumination and

driver posture. Six different values are calculated among with percentage of eyelid closure,

maximum closure duration, blink frequency, average opening level of the eyes, opening

velocity of the eyes, and closing velocity of the eyes. These measures were combined using

Fisher’s linear discriminated functions based on a stepwise kernel method to reduce the

correlations. The system has been tested using a driving simulator and the results could

achieve 86% of accuracy using six different drivers. In June, 2014, Eyosiyas et. al. [4]

described ‘Driver Drowsiness Detection through HMM based Dynamic Modeling’. “They

have designed a completely new approach for analyzing facial expressions of the driver

using Hidden Markov Model (HMM) to detect drowsiness. The complete design and system

were implemented using a virtual simulated driving environment and the overall system

accuracy achieved over 90% of classification rate.

 4

3- Methodology

A. Design Overview

Our proposed solution was designed based on the ECG module Ad8232 heart signal

recorder. Which is communicating with an Arduino microcontroller in which the signal is

being sent over USB serial port to a Raspberry Pi computer where all of the processing, and

decision making procedures are implemented. Below we present the high level design of

entire solution and explaining each block in details:

START
Reading ECG Signal by

Ad8232 on Arduino
Sending ECG signal over

USB port to RPI
Receiving and Decoding

the ECG signal on RPI
Preprocessing the ECG

Signal (Filters)

Extracting Features (MIN,
MAX, MEAN, etc) From R-

Peaks (Time and Freq.)

Constructing Features
Dataset (Labeled)

Training SVM and DT
Models on Features

Dataset

Evaluating SVM and DT
Models

END

Figure (1). System High Level Diagram

B. Generating ECG Signal

The selected ECG module is connected on 2 digital pins (10, 11) as well as on any

analog pin (A0) where the analog signal produces the signal of ECG and the digital ports

applying the pulse train job in order to construct a sin-wave signal. All readings coming

from the module are in range of 0-1023 value (0-5 volts). This signal is being taken by

Arduino. The Arduino device is connected with a Raspberry Pi-4 (RPI) computer over an

USB cable on USB port where the signal of ECG is written as a serial byte array with 10

millisecond delay for stability purposes. The RPI device receive the signal as a byte array,

so the RPI applies a decoding processes in order to retrieve the numerical data signal and

store it in a vector data structure. The following fig (2) shows the circuit connections

including all components used in our project and its schematic diagram as well

Figure (2). Circuit Diagram

 5

The following table includes all components with all connection specifications:

Component Input /
Output

Digital /
Analog

Pin Power

Raspberry Pi
4 Model B

Both Both - 12v

ECG Ad8232 Input Analog/Digital Analog – A0
Digital (10-11)

5v

Digital Buzzer Output Digital D4 5v
Arduino Uno
R3

Both Both - 5v

Table (1). Components Table

Using the ECG-Ad8232 module and Arduino MCU, we have recorded 100 ECG signals from

5 different drivers in awake mode as well as 20 signals from single driver in sleep mode.

These signals are saved and stored locally on the Raspberry Pi device where they are used

in the further features extraction, training and testing processes. The sampling rate of each

recorded signal is 256Hz as well as each ECG recorded signal contains 5000 samples in
range of [0-1023] as per the ECG module specifications.

C. Preprocessing ECG Signal and Peaks Calculation

In this stage the signal is received and decoded properly. Not all ECG signals are

coming in best form with 0 noise. That’s why we have to apply a kind of cleaning process on

the signal to remove any possible noise. 4 different filters where combined and used

together to remove any possible noise (Low-Pass, High-Pass, Band-Pass, Notch) filters.

Once the ECG signal has been filtered and all possible noise are eliminated, then a kind of R-

Peaks models is implemented to extract the peaks vector of the signal from time domain

and frequency domain. All sleeping features are expected to located in this peak vector.

Figure (3 and 4), present a sample of a filtered ECG signal with all related R-Peaks values in

time domain from awake and sleeping drivers’ signals.

 6

Figure (3). Filtered ECG with R-Peaks Indices from Awake Signal in Time Domain

Figure (4). Filtered ECG with R-Peaks Indices from Asleep Signal in Time Domain

D. Extracting Statistical Features/Creating Dataset/Features Normalization

From the peak vector, the following statistical values (MAX, MIN, MEAN, MEDIAN, STD)

are calculated from the Peak-Time-Domain and Peak-Frequency-Domain. Each Feature’s

 7

vector extracted from each received signal is being stored in a Dataset with its related

binary label (0 or 1) (sleep or awake). This dataset will be used in the training phase. A Z-

Score normalization model has been applied on the training dataset so that we ensure the

features consistency and stability. Below in Table (2) we show a capture of some basic
statistics about the generated and normalized training dataset.

Table (2). Summary statistics about the normalized training dataset

E. Training and Evaluating SVM and DT models

once the dataset is created, a Support Vector Machine learning model with an RBF

Gaussian Kernel is designed and implemented to train over the dataset and construct a

trained model for further classification and testing purposes. Another Decision Tree based

model is also created and trained over the training dataset to provide more stability to our

proposed design. Both models are saved locally and used in further evaluation processes.

Once the SVM and DT models are trained and stored locally, the system will start receive

new signals from the ECG device and apply on them all previous stages (filtering, features

extraction) and then apply the SVM trained model to find the label (0 or 1) (sleep or

awake). The below flowchart describe the entire training process:

 8

START

Initialize GPIO

Initialize Serial

Read 5000 ECG
samples

Decode ECG samples

Filter ECG signal

Convert ECG signal
into freq. domain

Calculate Peaks

Extract Stats Features
from Time/Freq.

Domains

Construct Features
vector

Append Features
vector to Dataset

Dataset Completed?

Train SVM/DT SVM/DT Trained?

Save SVM/DT models
locally

No

Yes

Yes

No

END

Figure (5). ML Training Process on RPI

List of functions implemented in the training phase are described in the below table:

Function/Procedure Input Output Description
createDataset Folder Containing

all recorded ECG
signals from all
drivers

A data frame labeled
Matrix (Dataset.csv)

Imports all signals
recorded from all
drivers. Applies
Filters (High, Low,
Bandpass and
Notch) on each
individual signal.
Converts each signal
into frequency
domain. Calculate
peaks vector.
Extracts Statistical
features from time
and frequency
domains of peaks
vector. Store
features with
related label into a

 9

matrix. Normalize
the final dataset
matrix using z-score
normalization.
Applies outliers’
detection on Dataset
on each feature.
Save the Dataset
locally as “csv” file.

createMLmodel Training Dataset A stacked struct
containing SVF-RBF
kernel trained
model with DT
model.

Imports training
dataset. Splits
training dataset into
70% training and
30% testing. Call
built-in SVM model
with a Gaussian RBF
kernel and DT
model. Trains SVM
model till learning
rate 0.0000001
reached. Train DT
classifier. Validate
models with 30%
created testing set.
Calculates confusion
matrix for both
models. Save models
locally for testing
purposes.

Table (3). Functions in Training Phase

The below flowchart describe the entire evaluation process:

 10

START

Initialize GPIO

Initialize Serial

Read 5000 ECG
samples

Decode ECG samples

Filter ECG signal

Convert ECG signal
into freq. domain

Calculate peaks

Extract stat Features
from Freq. and Time

Domains

Construct Features
vector

Apply SVM and DT
trained Models

Classification 0? Buzzer OFFYes

Buzzer ON

No

RPI Testing Flowchart

Figure (7). RPI Testing Flowchart

List of functions implemented in the evaluation phase are described below

Function/File Code Input Output Description
receiveECGsignal Port Address and

Baud Rate
An ECG signal vector
containing 5000
samples

Creates a serial
instance on
ttyACM0 port
number and with
9600 bit/s baud
rate. Reads
incoming serial data
byte by byte.
Decodes serial data.
Stores serial data
into an
ecg_signal_vector.

predictDriverStatus Serial ECG signal Predicted driver
status (0 awake OR
1 asleep) and Sound
buzzer output.

Applies Filters
(High, Low,
Bandpass and
Notch) on ECG serial

 11

signal. Converts ECG
signal into
frequency domain.
Calculate peaks
vector. Extracts
Statistical features
from time and
frequency domains
of peak vector.
Stores features into
a features vector.
Normalize the final
features vector
using z-score
normalization.
Imports the trained
SVM/DT models
from local drive.
Calls SVM/DT model
on Features vector
instance. Predicts
the status of driver.
Runs buzzer in case
predicted value is
asleep.

Table (4). Functions in Testing Phase

4- Classification Results and Discussions

Two machine learning models were implemented, designed and tuned in order to

classify the incoming ECG recorded signal from the AD8232 device attached to the driver

chest. The Decision Tree (DT) and Support Vector Machine (SVM) classifiers perform

perfectly during the training phase as well as the testing phase. Below we list all evaluation
criteria, parameters, matrix, and factors.

A. Accuracy an Area Under Curve (AUC)

Model Accuracy AUC F1 Prec.
DT 0.9533 0.9880 0.9535 0.9353

SVM 0.9621 0.9901 0.9884 0.9533
Table (5). ACC/AUC Comparison

 12

B. Confusion Matrix

Figure (8). SVM Confusion Matrix

Figure (9). DT Confusion Matrix

C. Learning Curve

Figure (10). SVM Learning/Cross Validation Curves

 13

Figure (11). DT Learning/Cross Validation Curves

D. Decision Boundaries and Visual Decision Tree

Figure (12). SVM Decision Boundaries

 14

Figure (13). DT Decision Boundaries

Figure (14). DT Representation

Based on all previous evaluation criteria and parameters, we can conclude that both

models are performing in a very good range with high accuracy and scoring. SVM is

showing more accuracy and robustness in terms of the AUC and this is because of the

strength behind the RBF kernel which can deal with different data distributions and
dimensions.

 15

5- Conclusion and Future Works

Machine learning based solutions provide a huge added value in terms of complex data

classifications and pattern recognition, in our proposed design, the SVM and DT based

models could help us potentially by the high dimension of the recorded ECG signal and by

the very tiny differences between asleep and awake signals. Statistical features have very

simple and direct format so that they have enriched the design by providing some very

clear stats about each recorded signal. What we actually have noticed is that the features

distributions between awake and asleep signals are almost same, but the major difference

was the power of the statistical features in the asleep signal, in which it was 100 times

higher than it is in the awake signal. Filtering process is extremely important and highly

recommended because of the high noise existence inside the ECG signal coming from the

Ad8232 module, which helps also to reduce the error during the classification and

prediction process. The communication between Arduino and RPI is done by the USB port

and was fair enough to finalize the main requirement. Mainly the design is stable and

accurate, and some points can be added in the future just to improve the design and

enhance the result of the classifier. Implementing another set of machine learning models

like ANN and NB can may provide better than SVM accuracy and stability. Changing the

communication between Arduino and RPI to become wireless can also simplify the
prototype design at the driver end.

References

[1] Hong Su and Gangtie Zheng, “A Partial Least Squares Regression-Based Fusion Model
for Predicting the Trend in Drowsiness” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008.

[2] Fabian Friedrichs and Bin Yang, “Camera-based Drowsiness Reference for Driver State
Classification under Real Driving Conditions” 2010 IEEE Intelligent Vehicles Symposium
University of California, San Diego, CA, USA June 21-24, 2010.

[3] Zhang, Wei; Cheng, Bo; Lin, Yingzi,” Driver drowsiness recognition based on computer
vision technology.” Published in: Tsinghua Science and Technology (Volume: 17, Issue: 3)
Page(s):354 - 362 Date of Publication: June 2012

[4] Eyosiyas Tadesse, Weihua Sheng, Meiqin Liu,” Driver Drowsiness Detection through
HMM based Dynamic Modeling.” 2014 IEEE International Conference on Robotics &
Automation (ICRA) Hong Kong Convention and Exhibition Center May 31 - June 7, 2014.
Hong Kong, China.

