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A B S T R A C T

To automate the detection of covid-19 patients most have proposed deep learning neural networks to classify 
patients using large databases of chest x-rays. Very few used classical machine learning methods. Machine 
learning methods may require less computational power and perform well if the data set is small. We experiment 
with classical machine learning methods on three different data sources varying in size from 55 to almost 4000 
samples. We experiment with four feature extraction methods of Gabor, SURF, LBP, and HOG. Backpropagation 
neural networks and k-nearest neighbor classifiers are combined using one of the four combining methods of 
bagging, RSM, ARCx4 boosting and Ada-boosting. Results show that using the proper feature extraction and 
feature selection methods very high performance can be reached using simple backpropagation neural network 
classifiers. Regardless of combiner method used, the best classification rate achieved was 99.06% for the largest 
data set, and 100% for the smallest data set.

Introduction

Automating disease diagnosis is a prominent capability of machine 
learning and artificial intelligence systems. Machine learning and pat
tern recognition classifier models [1–4] can spot trends and relation
ships in data sets, which makes them well suited for many applications 
to automate decisions or applications that require classification of un
known samples, including medical applications [2,3,5]. Therefore, we 
aim to experimentally investigate several methods to find the best 
system that can detect COVID-19.

Suspected patients that suffer from COVID-19 symptoms undergo 
screening using chest X-Ray or chest CT Scan, both showing patterns of 
COVID-19 lung disease [6]. Chest X-ray exam is one of the most fre
quent and cost-effective medical imaging examinations. However, in 
contrast to CT images, clinical diagnosis of chest x-rays is found to be 
more difficult and challenging [6]. As repeatedly claimed by re
searchers on x-ray segmentation [7–9], x-ray images are more available 
but also difficult to detect and diagnose. Covid-19 Chest X Rays, or CXR, 
were assessed by [10] for the presence of a specific distribution of the 
disease. They found that a characteristic feature of COVID-19 pneu
monia is involvement of the outermost, peripheral lung fields showing 
bilateral multifocal, patchy, or confluent opacities. However, other 
viruses such as SARS-Cov-1 and MERS-Cov also may cause pneumonia 

[10]. Therefore, radiologists must screen the x-ray images to determine 
the cause of the lung infection. This motivated us to investigate the 
possibility of designing a CAD system to detect COVID-19 from x-rays. 
Additionally, in the pre-analytical stage, accurate molecular diagnosis 
of COVID-19 is not always guaranteed and is influenced by collecting 
the proper respiratory tract specimen at the right time from the right 
anatomic site [11,12]. This confirms the need for methods of diagnosis 
other than PCR, such as the x-ray. Also, contrary to COVID-19 test kits, 
X-ray machines do not require transportation of infected samples and 
are widely available in all hospitals. The resulting computer aided de
tection or computer aided diagnosis, CAD, system can be used as a first 
line of screening and as a parallel diagnosis method.

To build a CAD system most of the surveyed papers in the next 
section proposed covid-19 detection using deep learning neural net
works that require more computational power and require a very large 
database to train. We aim to find if it is possible to achieve rates similar 
to deep learning neural networks using classical machine learning 
methods. In our experimental investigation we experiment with various 
machine learning methods at the different stages of the system, from 
the initial stage of feature extraction to the final stage of classifier 
combination and fusion. Our experimental results show that classical 
machine learning methods may yield competitive rates and outperform 
the sophisticated deep learning neural network models using small data 
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sets. The contributions of our work are summarized as follows: 

• We present an experimental comparison of many machine learning 
methods to show how each performs in this application.

• We present a machine learning method for detecting Covid-19 pa
tients that outperforms most of the surveyed deep learning neural 
networks using less computational power.

Related work

Since the first appearance of the COVID-19 chest image data in 
March 2020 research on detection methods using CXR or CT images has 
received a great deal of attention in the artificial intelligence commu
nity. Most used deep learning neural networks to achieve classification 
rates of 90% and above. The first method that achieved an accuracy of 
92% was proposed by [13]. They used a deep learning system for 
COVID-19 detection, however, using CT scans. For a quick review on 
early work done to segment and diagnose covid-19 from CT or CXR 
images refer to [14]. Surveying methods that only use CXR images 
yielded the papers listed in Table 1. This table summarizes the methods 
and the rates achieved by each. Papers in the first five rows [13,15–19]
use deep learning neural networks, while [20] and [21] use various 
machine learning methods.

A detailed review of these papers shows that most use deep learning 
neural networks but differ in their architecture and the parameter se
lection method. Authors in [15] propose a 2D curvelet transform and 
deep neural network to detect covid-19 from CXR images. They com
pare the performance of three deep networks that have three different 
inputs; one without any transformation on the images, the second with 
a 2D curvelet transformation on the input images and the third with 
chaotic salp swarm algorithm applied to the 2D transformation equa
tion. In a two-class problem, authors in [16] propose using multi-con
volutional neural network, CNN, as a first stage for feature extraction, 
followed by SFSS feature selection to reduce the data dimensionality 
from CXR images. Finally, the images are classified using the Baysnet 
classifier. They experiment with different combinations of convolu
tional neural networks, CNNs, three different feature selection methods 
and many classifiers. Their data consist of more than 900 samples, 
approximately half of them being covid − 19 positive. They used 10- 
fold cross-validation to measure the different metrics of recall, specifity, 

accuracy etc. Authors in [17] Use DEnsenet121, a pretrained deep 
learning network, to detect covid-19 from chest x-rays. They use 
gravitational search algorithm, GSA, to select optimal values of the 
hyperparameters of the network. Gravitational search algorithm, GSA, 
is used to find the optimal parameters of the CNN. A deep learning 
neural network named COVID-net is built by authors in [18], which is 
pretrained using Image-Net dataset then covid CXR images. Factors 
used by COVID-net to identify are ground glass opacities, bilateral ab
normalities and inferstitial abnormalities. They compare their proposed 
deep learning neural network to VGG-19 and ResNet, and show it 
outperforms them, with a lighter design. Authors in [19] They propose 
a computer aided design, CAD, framework that consists of two steps 
with deep learning neural networks: the first deep learning neural 
network extracts lung features, the second deep learning neural net
work localizes and assigns CXR to left lung, right lung or bipulmonary.

Authors in [20] investigate different machine learning methods and 
one deep learning method. They experiment with three classifiers; 
feedforward neural network with raw input images, feedforward neural 
network with features extracted using the methods of local binary 
pattern, LBP, and gray level co-occurrence matrix, GLCM in addition to 
texture feature operators, and finally a convolutional neural network 
with raw input images. They test using Cohens databases published in 
March and April 2020. Authors in [21] Propose using two stages of 
classifier ensembles. The first classifies samples to normal or pneu
monic. The second detects covid from the pneumonic images. They use 
k-nearest neighbor, artificial neural network, support vector machine, 
decision tree and naïve bayes classifiers in the ensemble then fuse the 
decision using vote fusion method. They extract features from the x-ray 
images using histogram of oriented gradients, HOG, and GLCM 
methods. They also use the Cohen database.

The next section presents the experimental methodology, describing 
machine learning methods of feature extraction, selection, classifica
tion, and combination. Additionally, the data used are described. 
Section 3 presents the results and discussion. The conclusion is pre
sented in Section 4.

Research methodology

The machine learning system proposed in this paper is shown in 
Fig. 1. The stages of the system are described in the following 

Table 1 
summary of proposed methods and classification rates achieved by each method. 

Authors Method Rate

Aytac Altan and Sicken karasu.[15] Deep learning neural networks with chaotic salp swarm algorithm applied to the 
2D transformation equation.

99%

Bejoy Abrahama and Madhu S.Nairb,[16] Multi-CNN as a first stage for feature extraction and baysnet classifier at a final 
stage.

97.44%

Dalia Ezzata, Aboul EllaHassaniena and 
Hassan AboulEllab,[17]

Use DEnsenet121, to detect. GSA, is used to find the optimal parameters of the 
CNN.

98.38%

Linda wang, Zhong qiu lin and Alexander 
Wong[18]

Deep learning neural network which is pretrained using Image-Net dataset then 
covid cxr images.

93.3%

Zheng Wang et.al.[19] Two steps with deep learning neural networks, D.L.: the first DL extracts lung 
features, the second DL localizes and assigns CXR to left lung, right lung or 
bipulmonary.

93.65%

Sergio Varela-Santos and Patricia Melin,[20] Experiment with three classifiers; feedforward neural network with raw input 
images, feedforward neural network with features extracted using the methods of 
LBP and GLCM in addition to texture feature operators, and a convolutional neural 
network with raw input images.

A range of rates from 80.61% to 
96.83% on different data sets.

Tej Bahadur Chandra,[21] Two stages of classifier ensembles. Used k-NN, ANN, SVM, DT and NB classifiers in 
the ensemble. They extract features from the xray images using HOG and GLCM 
methods.

98.06% stage I and 91.32% stage 
II

Methods proposed in this paper Extract features from images using LBP then reduce them using fisher score. Next 
data are used to build an ensemble of neural network classifiers combined using 
Ada-boosting, ARCx4 boosting, RSM or bagging.

99.06% 98.88% 99.03% 
98.85%
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subsections. The experiments were implemented using Matlab version 
2021a.

Datasets

A training set of x-ray images from both healthy and infected lungs 
are required to build the required classifier system. In addition to x-ray 
images of infected lungs due to COVID-19 there is a need for images of 
infected lungs due to other causes. There are several datasets of COVID- 
19 CXR images available. The first such data was published on GitHub 
repository by Dr. Josef Cohen from the University of Montreal [21]. He 
started collecting these COVID-19 images in March 2020 and it was 
expected to grow. Two other sources [23,24] were also used in our 
experiments. At the time of our experiments the three sources had the 
number of frontal x-ray pictures, as shown in Table 2. Other samples of 
CT or non-frontal x-rays were omitted. The data size may increase as 
more images are contributed and uploaded to the database. We aim at 
only detecting covid, therefore we have a two-class problem. We la
beled the data to two classes, the first is the covid class while the second 
includes the non-covid samples which included normal and pneumonia 
due to other sources than covid-19.

Dataset preparation for training and testing

In this paper, initially as a preprocessing step, the images are resized 
to 512 by 512 pixels. Experiments are performed on non-cropped 
images then repeated for data 1 and data 2 using cropped images that 
include only the lungs as shown in Fig. 2 and Fig. 3. In these figures the 
left is the original uncropped, and the middle is the cropped and re
sized. Images are converted to matrices and a label is added to the 

images as a covid or non-covid class. Finally, the data are partitioned to 
a training set and a test set using the 10-fold cross validation. This is 
similar to the partition used in the papers of Table 1.

Feature extraction methods

Image texture is defined as a two-dimensional phenomenon char
acterized by two properties: (1) spatial structure (pattern) and (2) 
contrast. They work because the most frequent patterns correspond to 
primitive microfeatures such as edges, corners, spots. We experiment 
with filtering or feature extraction methods that can effectively extract 
the changes made in a chest x-ray image by covid-19 infections. X-ray 
images are converted to column features using a feature extraction 
method. We experiment with Speeded-Up Robust Features, or SURF, 
Gabor, LBP, and HOG [25] methods. Look at the appendix for a detailed 
description of the four feature extraction methods. Here we will briefly 
present the parameter values of each method.

For the LBP we set the number of divisions of an image to 10. We set 
the number of neighbors to 20. The radius of circular pattern used to 
select neighbors is set at 1.

The parameters for the Gabor are set as follows. The wavelength is 
set in increasing powers of 2 starting from 4

2
up to the hypotenuse 

length of the input image. We initially find the minimum and maximum 
wavelengths. Minimum is 4

2
which is 2.83, while maximum is the 

square root of sum of square of number of columns and number of rows 
in an image. Next, assume n is the integer result from the base 2 
logarithm of the maximum wavelength value divided by the minimum 
wavelength value. The wavelength is the set of values resulting from 
the following equation:

Wavelength = minimum wavelength value x 2(0 to n−2).
Gabor orientation is set at 0 and 90 for data 2 and at 0 and 126 for 

data 1 and 3. Based on the given set of orientation and wavelength 
values we create a set of Gabor filters. Then, we extract Gabor magni
tude features from source images using the filters. We use simple 
Gaussian low-pass filtering to smooth the Gabor magnitude informa
tion. We choose a sigma that is matched to the Gabor filter that ex
tracted each feature. We use a smoothing term K= 3 that controls how 
much smoothing is applied to the Gabor magnitude responses.

Fig. 1. Block diagram of proposed system. 

Table 2 
number of samples in each data set of the three sources. 

x-rays: Covid Normal Pneumonia Total samples

Source 1,[22] 478 111 190 778
Source 2,[23] 35 18 2 55
Source 3,[24] 1143 1341 1345 3829

Fig. 2. Images from source 1, for uncropped covid (L), cropped & resized covid (middle) and non-covid (R). 
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Speeded-Up Robust Features, SURF, feature descriptor is based on 
the sum of the Haar wavelet response around the point of interest. So, 
the region is split up regularly into smaller 4 × 4 square sub-regions. 
For each sub-region, we compute a few simple features at 5 × 5 reg
ularly spaced sample points. The Euclidean distance is used to calculate 
the distance between the descriptor vectors of two images.

For the HOG we group 16 × 16 pixels and replace their gradients 
with one that represents the arrow directions that were the strongest. 
The result is an image of directed arrows that captures the structure of 
an image.

Feature selection methods

After extracting the features using any of the four methods above, 
we reduce their dimensionality using feature selection. The full fea
ture set shown as columns of data obtained from the feature extrac
tion method is reduced using the feature selection method proposed 
in [4]. It is regularly used as a clustering tool; however, we do not aim 
to find classes or clusters because the classes are known. We use this 
clustering tool as a feature selection method to find the most 
distinguishing features. Therefore, we use this clustering tool to 
find features that yield the largest distance between the means of 
the two clusters and yield clusters with smallest standard deviation. 
This can be found using the following equation, known as fisher score 
[1]. 

=f
(µ µ )
( )1,2

1 2
2

1 2 (1) 

Based on their fisher scores we sort the features in a descending 
order. We take a maximum of top 500 features with the highest fisher 
score. Next, we find and remove the redundant features if they exist. We 
keep all features if the data has a dimensionality less than 500. Initially 
extracted features in this project exceeded 500.

Classifier methods

Following the transformation of images to columns of data and re
ducing the number of columns to a minimum we use the data to build or 
train the classifiers. Using the reduced feature set we create an en
semble of neural network classifiers [1]. We also experiment with the k- 
nearest neighbor classifier which does not require training [1]. For the 
nearest neighbor classifier k is set at 3 and the distance metric is the 
Euclidean metric. The neural network classifier used is a back
propagation network with Levenberg-Marquardt training function. It 
consists of three layers, where the number of neurons in the first layer is 
equal to the number of features, while that for the hidden (second) 
layer is set at 5. The number of neurons at the output layer is equal to 

the number of classes. The number of epochs is set at 100, while the 
training error goal is set at 0.001.

Classifier combiner methods

A combination of classifiers is used to achieve the best performance 
possible. We experiment with four prominent classifier combiner 
methods: Bagging [29], Random subspace or RSM [30], Adaboosting 
[31,33] and ARCX4 boosting [33].

Bagging predictors proposed by Breiman, is a method of generating 
multiple versions of a predictor or classifier, via bootstraping and then 
using those to get an aggregated classifier. We set the number of mul
tiple versions of classifiers to 25, as recommended by Breiman. The 
total number of samples in each bootstrap set is equal to those of the 
original training set.

The second combiner ‘RSM’ aims at creating diverse classifiers by 
assigning different features to each classifier. The number of features is 
set at a fixed value, m, less than the total number of features. Each 
classifier is assigned a subset of features that are randomly selected 
without replacement from the full feature set. This results in classifiers 
having different views of the data space. We set m to equal 75% of the 
total number of available features. The number of combined classifiers 
is set equal to bagging at 25.

Boosting is an effective combiner method proposed by Fruend in 
1995 and improved by Fruend & Schapire in 1997 [31,32]. It works by 
focusing on the difficult samples. It creates many classifiers and assigns 
samples to classifiers randomly. However, each sample has a weight 
that is related to the probability of a sample being selected for inclusion 
in the classifier. Therefore, it iteratively builds a new classifier by 
changing the number of some samples in the classifiers training set. 
This is done by changing the weight of each sample based on the per
formance of the last built classifier. Weights of misclassified samples are 
increased, and weights of correctly classified samples are decreased. 
Therefore, for the Ada-boosting and ARCx4 boosting combiners the 
number of built classifiers depends on the data. Following is a detailed 
description of a version of the boosting method called ARCx4 which 
was proposed by Brieman [33]: 

a. Initialize the weights of samples to be 1/N, where N is the number of 
samples in the original training set.

b. Create the first classifier using a training subset created from the 
original training set by randomly selecting samples given the initial 
weights of samples.

c. Check the performance of the classifier to find misclassified samples.
d. For each sample we count the number of classifiers that mis

classified the sample, then divide by number of classifiers in the 
combiner to get a value p.

e. Calculate h= 1 + p4 for each sample

Fig. 3. Images from source 2, for uncropped covid (L), cropped & resized covid and non-covid (R). 
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f. Find the new weights for each sample as h of a sample divided by 
sum of all h for all samples

g. If maximum number of classifiers of a combiner is not reached 
create a new classifier using the new weights. Otherwise stop.

h. Repeat steps c to g.

Finally, the decisions or probability values of each of the classifiers 
in a combiner are fused using the sum fusion method to obtain an 
average probability. We compare the performance of the different 
combiners and classifier types by calculating the classification rate, 
specifity and sensitivity. Experiments are repeated using 10-fold cross 
validation after randomly shuffling the samples. The results of the ten 
trials are averaged to achieve statistical reliability.

Deep learning neural network methodology

In addition to deep learning neural networks results provided by 
others we also run experiments on deep learning neural networks to 
compare the performance of our machine learning method to a deep 
learning neural networks network, on the same data. We run experi
ments of deep learning neural networks for all three datasets. Initially 
we load the image data into an image datastore database readable by 
the deep learning neural networks. Then, we randomly split the data to 
90% training and 10% test sets using 10-fold cross validation. Next, we 
define the convolutional deep learning network architecture as follows, 
progressing sequentially from first layer to last:

1. An input layer that is the same size as the input image, which are 512 by 512. The 
channel size is set to 1 because our data consists of grayscale images.

2. Next layer is the convolution layer with 20 Filters which corresponds to the 
number of neurons that connect to the same area in the image and filter size 10.

3. Next a batch normalization layer is used to normalize the activations propagating 
through a network. This layer is used between convolutional layers and ReLU 
layers.

4. Next a ReLU layer is used as a nonlinear activation function.
5. A max pooling layer is used as a down sampling layer to increase the number of 

filters in deeper convolutional layers without increasing amount of computation 
per layer. Maximum value of rectangular regions is set at 2 with step size of 
training function set at 2.

6. Layer at steps 2–5 are repeated with 30 filter in the convolutional layer and filter 
size 8.

7. Again, layers at steps 2–5 are repeated with 40 filters in the convolutional layer 
and filter size 5.

8. Next, we have a fully connected layer where neurons fully connect to neurons in 
the preceding layer. The output of this layer is equal to the number of classes, i.e. 
2.

9. Next we have a softmax layer which normalizes the output of the last fully 
connected layer, i.e. the output consists of positive numbers that sum to 1.

10. Finally the last layer is the classification layer which uses the output of the 
preceding layer to assign the input to one of the classes.

Results and discussion

We have tables of results for each of the two classifier types and four 
combiner methods. The experiments were also repeated for each of the 
three data sets extracted using four feature extraction methods. Table 3

Table 3 
number of features generated by each feature extraction method and number of features remaining after reducing using the fisher score feature selection. 

HOG HOG reduced SURF SURF reduced Gabor Gabor reduced LBP LBP reduced

Data 1 142885 500 35713 182 262145 439 2201 491
Data 2 142885 500 13825 20 262145 280 2201 479
Data 3 142885 500 31233 427 262145 469 2201 439

Table 4 
Classification rates using 10-fold cross validation partition of non-cropped CXR image data. 

Classifier Combiner HOG SURF LBP Gabor Gabor & LBP SURF & LBP Gabor & SURF Gabor, SURF & LBP

k-NN Data 1 Boosting 67.69 61.54 72.05 61.67 61.67 68.97 61.03 61.41
Arcx4 69.62 62.82 73.33 60.38 61.03 69.62 61.15 60.13
RSM 70.51 65.00 73.97 60.90 60.90 68.59 61.41 61.28
Bagging 68.33 63.21 72.82 62.05 62.31 69.23 61.67 62.05

Data 2 boosting 100 63.33 81.67 68.33 61.67 76.67 63.33 63.33
Arcx4 100 70.00 81.67 71.67 70.00 78.33 73.33 73.33
RSM 100 66.67 85.00 68.33 68.33 81.67 71.67 68.33
Bagging 100 71.67 83.33 71.67 73.33 80.00 73.33 73.33

Data 3 boosting 93.26 67.70 98.25 84.73 88.49 95.07 85.54 87.68
Arcx4 92.38 70.86 98.04 85.30 88.30 95.01 86.58 88.02
RSM 92.85 74.33 98.28 85.35 88.30 95.48 86.11 87.73
Bagging 92.01 72.09 98.20 85.69 88.36 94.88 86.40 87.99

Neural networks Data 1 boosting 70.51 57.95 72.31 48.59 74.10 70.90 61.92 69.49
Arcx4 69.87 63.85 72.56 62.31 72.44 69.10 65.38 70.77
RSM 72.05 67.31 71.79 64.36 71.79 70.90 66.15 71.28
Bagging 71.03 61.28 72.18 63.59 73.97 70.13 64.10 71.79

Data 2 boosting 100 71.67 88.33 56.67 76.67 86.67 75.00 83.33
Arcx4 100 70.00 85.00 71.67 76.67 88.33 75.00 81.67
RSM 100 71.67 81.67 70.00 80.00 86.67 78.33 85.00
Bagging 100 71.67 85.00 68.33 75.00 88.33 78.33 83.33

Data 3 boosting 93.76 76.11 99.06 87.96 98.15 97.42 85.12 97.55
Arcx4 94.18 76.06 98.88 87.91 98.17 97.36 85.01 97.55
RSM 94.44 76.08 99.03 87.52 98.07 97.73 85.56 97.86
Bagging 94.20 76.61 98.85 87.73 98.04 97.31 85.20 97.70
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displays the number of features generated by each feature extraction 
method, for each data set. It also shows the number of features after 
reducing them using our proposed feature selection method.

Results in Table 4 show that our proposed system yield very high 
rates. Previous works surveyed in the introduction and summarised in 
Table 1 use a large data set. Therefore, we focus more on results of the 
largest data set, number 3.

We also experiment with merging data from two or three feature 
types. The classification rates for merged feature sets are displayed in the 
columns following the single feature columns in Table 4 and Table 6.

Results show that the classical machine learning system yields very 
good results. For some feature extraction methods, the performance 
reaches close to the optimum rate of 100%. This was achieved using 
neural networks and LBP features. Using HOG at smallest data set size, 

for both classifier types, the classification rate reaches the highest rate 
of 100%. Table 5 shows the resulting metric values for the LBP features 
using neural network classifiers. These achieved rates outperform most 
surveyed methods in Table 1. Only the first deep learning neural net
works method in Table 1 is close to our method, however, significantly 
lower than our best rate. To compare using the same data set we also 
run experiments on deep learning neural networks. Our deep learning 
neural networks rates achieved on data 1, 2 and 3 are 71.79%, 40% and 
98.43%, respectively. Comparing to our method we find that our 
method outperforms our runs of deep learning neural networks. Note 
that deep learning yields good results only if a large data set exists. 
However, for small data as in source 1 or very small as in source 2 the 
deep learning neural networks method yields very low rates, while our 
method yields higher rates.

Fig. 4 and Fig. 5 show the performance and time needed for each 
training and validation process of the deep learning neural networks for 
the smallest source 2 and the largest source 3 data sets.

One reason for the superiority of the classical system used in our 
experiments over all other methods is the feature extraction method 
used. The filtering method of Gabor and LBP catch the changes caused 
by covid-19 in the lungs. Another reason for the superiority of our 
method over surveyed deep learning neural networks methods is our 
feature selection method, which reduces the dimensionality very ef
fectively without losing the discriminating information.

We manually cropped images of data sets 1 and 2, to exclude 
areas beyond the ribs. Comparing Table 4 of non-cropped images to 
Table 6 of cropped images we find that LBP always benefits from 
cropping. However, HOG of Data 1 benefits from cropping and 
degrades on Data 2. Surf always degrades when we crop images and 
Gabor mostly degrades. Therefore, the best performance achieved 

Table 5 
Metric results of all combiners, averaged over 10 cross validations, for largest 
data source 3 using LBP features and neural network classifier. 

Ada-boost ARCx4 boost RSM bagging

Sensitivity 0.99 0.98 0.99 0.98
Specifity 0.99 0.99 0.99 0.99
Precession 0.98 0.98 0.98 0.98
Accuracy 0.99 0.99 0.99 0.99
F1 score 0.98 0.98 0.98 0.98
True positive 112.30 111.80 112.20 111.90
False positive 2.10 2.60 2.20 2.50
False negative 1.50 1.70 1.50 1.90
True negative 267.10 266.90 267.10 266.70
All negative 269.20 269.50 269.30 269.20

Fig. 4. Deep Learning results for the source 2 data. 
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by LBP and neural networks on the largest data set may be improved 
if cropped images are used. However, due to the large size of the 
data, manual cropping is not feasible, and an automatic segmen
tation method must be used.

Conclusion

To find the best automated COVID-19 detection system, we ex
periment with classical machine learning methods in contrast to deep 
learning methods. The four stage system consists of a feature extraction 
stage followed by a feature selection then classification and combiner 
stages. We experiment with four feature extraction methods of Gabor, 
SURF, LBP, and HOG. Then, we reduce the number of features using a 

fisher-score based clustering measure that is used as a feature selection 
method. The resulting features are used to build a multiple classifier 
system of backpropagation neural networks or k-nearest neighbour. 
Classifiers are combined using one of the four methods of bagging, 
RSM, ARCx4 boosting and Ada-boosting.

We found that using a suitable feature extraction method we can 
build an effective classical machine learning method that competes well 
with the more expensive deep learning neural networks and outper
forms most of them. LBP and HOG features yield best results using 
neural network classifiers, regardless of combiner method used, 
reaching 99.06% for the largest data set, and 100% for the smallest data 
set. However, bagging and RSM are more favourable as they are faster 
to train than boosting based combiners.

Fig. 5. Deep learning results for the source 3 data. 

Table 6 
Classification rates using 10-fold cross validation partition of cropped CXR image data. 

Classifier Combiner HOG SURF LBP Gabor Gabor & LBP SURF & LBP Gabor & SURF Gabor, SURF & LBP

k-NN Data 1 Boosting 70.77 63.85 70.90 61.28 59.23 65.26 60.39 62.05
Arcx4 72.18 64.10 70.26 59.49 59.36 64.62 62.56 61.03
RSM 73.59 66.28 72.18 60.26 60.13 65.13 60.77 60.90
Bagging 72.31 66.03 69.62 61.28 60.90 65.51 61.15 61.15

Data 2 boosting 98.33 70.00 76.67 63.33 70.00 76.67 65.00 63.33
Arcx4 98.33 78.33 75.00 73.33 73.33 81.67 75.00 73.33
RSM 98.33 76.67 71.67 73.33 73.33 81.67 73.33 73.33
Bagging 98.33 80.00 70.00 75.00 75.00 83.33 75.00 75.00

Neural networks Data 1 boosting 73.72 58.72 67.56 57.31 69.62 63.33 61.80 65.77
Arcx4 72.95 61.92 67.95 63.85 69.87 63.08 66.41 66.80
RSM 74.62 67.31 70.00 65.13 69.36 66.92 69.23 68.08
Bagging 72.05 63.46 66.67 65.26 69.36 63.97 67.82 66.03

Data 2 boosting 100. 85.00 76.67 51.67 76.67 91.67 80.00 91.67
Arcx4 100. 88.33 81.67 68.33 73.33 95.00 80.00 90.00
RSM 100. 81.67 76.67 73.33 76.67 93.33 81.67 88.33
Bagging 100. 85.00 83.33 68.33 75.00 96.67 81.67 91.67
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Appendix A

Histogram of Oriented Gradients, HOG

Histogram of Oriented Gradients was widely recognized after its introduction in 2005 [25,26] for face detection but was introduced earlier as a 
patent by Robert K. McConnell in 1986. It works by replacing pixels with gradients that show in which direction the grey image is getting darker, by 
comparing intensity of current pixel with the pixels directly surrounding it. Then we draw an arrow showing in which direction the image is getting 
darker. This is repeated for all pixels in an image. By considering only the direction that brightness changes we can compare images of different 
intensities. We can group 16 × 16 pixels, to reduce the amount of information, and replace their gradients with one that represents the arrow 
directions that were the strongest. The result is an image that captures the structure of an image.

Local Binary Pattern (LBP)

Local Binary Pattern (LBP) is a simple yet very efficient texture operator which labels the pixels of an image by thresholding the neighborhood of 
each pixel and considers the result as a binary number. The original LBP operator [25,28] forms labels for the image pixels by thresholding the 3 × 3 
neighborhood of each pixel with the center value and considering the result as a binary number. The histogram of these 28 = 256 different labels can 
then be used as a texture descriptor. We divide the image into blocks and apply LBP to each block separately. We set the number of divisions of an 
image to 10. Each application of the LBP to an image, or a block part of an image, will yield a histogram of LBP values of all pixels. We can increase 
the number of neighbors, between 4 and 24, to encode greater detail around a pixel. We set the number of neighbors to 20. The radius of circular 
pattern used to select neighbors captures more detail if increased. In our experiments we set the radius at 1.

Speeded-Up Robust Features, SURF

An effective feature extraction algorithm is the speed up robust features method [25,27]. SURF is composed of two steps: Feature Extraction and 
Feature Description. The SURF detector focuses its attention on blob‐like structures in the image. Blobs or interest points are detected by convolving 
the source image with the determinant of the Hessian (DoH) matrix, which contains different 2–D Gaussian second order derivatives. The first step is 
to find interest points at different scales to find blobs. Next, we find the orientation of the blob by finding its strongest direction in a circular window. 
A square region is constructed on the interest point with an orientation as found in the previous step to find and extract the SURF descriptor which 
indicates the nature of the pixels around the interest point.

Next, the creation of SURF descriptor takes place in two steps. The first step consists of fixing a reproducible orientation based on information 
from a circular region around the key-point or point of interest. Then, we construct a square region aligned to the selected orientation and extract the 
SURF descriptor from it.

SURF feature descriptor is based on the sum of the Haar wavelet response around the point of interest. So, the region is split up regularly into 
smaller 4 × 4 square sub-regions. For each sub-region, we compute a few simple features at 5 × 5 regularly spaced sample points. By comparing the 
descriptors obtained from different images, matching pairs can be found. The matching is carried out as follows. An interest point in the test image is 
compared to an interest point in the reference image by calculating the Euclidean distance between their descriptor vectors.

GABOR: Gabor features

The Gabor filter [25] is a linear filter used in a lot of image processing applications for edge and object detection, texture analysis and feature 
extraction. These filters have been shown to possess optimal localization properties in both spatial and frequency domain and thus are well suited for 
texture segmentation problems. Gabor filters are special classes of band pass filters, i.e., they allow a certain ‘band’ of frequencies and reject the 
others. A Gabor filter can be viewed as a sinusoidal signal of particular frequency and orientation, modulated by a Gaussian wave. In practice to 
analyze texture or obtain features from an image, a bank of Gabor filters with several orientations are used. The patterns in an image are highlighted 
when the input image is convolved with all the Gabor filters. The result is a high response at edges and at points where texture changes. Therefore, 
certain features respond to a certain filter. There are many parameters that control how a Gabor filter will be, and which features will it respond to. 
These parameters are described next.

λ — Wavelength of the sinusoidal component. The wavelength governs the width of the strips of Gabor function. Increasing the wavelength 
produces thicker stripes and decreasing the wavelength produces thinner stripes.

Ө — The orientation of the normal to the parallel stripes of Gabor function. The theta controls the orientation of the Gabor function. The zero- 
degree theta corresponds to the vertical position of the Gabor function.

ɣ — The spatial aspect ratio or gamma specifies the ellipticity of the support of Gabor function, or height of the Gabor function. For very high 
aspect ratio the height becomes very small and for very small gamma value the height becomes quite large.
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σ — The bandwidth or sigma/standard deviation of the Gaussian envelope. It controls the overall size of the Gabor envelope. For larger 
bandwidth, the envelope increase allowing more stripes and with small bandwidth the envelope tightens.

In our experiments we set the wavelength in increasing powers of two starting from 4
2

up to the hypotenuse length of the input image. We 

initially find the minimum and maximum wavelengths. Minimum is 4
2

which is 2.83, while maximum is the square root of sum of square of number 
of columns and number of rows in an image. Next, assume n is the integer result from the base 2 logarithm of the maximum wavelength value 
divided by the minimum wavelength value. The wavelength is the set of values resulting from the following equation:  

Wavelength = minimum wavelength value x 2(0 to n−2)                                                                                                                         

Orientation is a set of values between 0 and 180 with increments of delta theta. We found best results when using delta theta increment of 126 for 
data 1 and 3 and 90 for data 2. Therefore, gabor orientation will be 0 and 90 for data 2 and will be 0 and 126 for data 1 and 3. Based on the given set 
of orientation and wavelength values we create a set of gabor filters. Then, we extract Gabor magnitude features from source images using the filters. 
To use Gabor magnitude responses as features for use in classification, some post-processing is required. This post processing includes Gaussian 
smoothing, adding additional spatial information to the feature set, reshaping our feature set to the form expected by the pca and kmeans functions, 
and normalizing the feature information to a common variance and mean. We use simple Gaussian low-pass filtering to smooth the Gabor magnitude 
information. We choose a sigma that is matched to the Gabor filter that extracted each feature. We use a smoothing term K= 3 that controls how 
much smoothing is applied to the Gabor magnitude responses.
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